Protein Structure Prediction with High Degrees of Freedom in a Gate-Based Quantum Computer
Protein folding, which traces the protein three-dimensional (3D) structure from its amino acid sequence, is a half-a-century-old problem in biology. The function of the protein correlates with its structure, emphasizing the need to study protein folding to understand the cellular and molecular proce...
Gespeichert in:
Veröffentlicht in: | Journal of chemical theory and computation 2024-11, Vol.20 (22), p.10223-10234 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10234 |
---|---|
container_issue | 22 |
container_start_page | 10223 |
container_title | Journal of chemical theory and computation |
container_volume | 20 |
creator | Pamidimukkala, Jaya Vasavi Bopardikar, Soham Dakshinamoorthy, Avinash Kannan, Ashwini Dasgupta, Kalyan Senapati, Sanjib |
description | Protein folding, which traces the protein three-dimensional (3D) structure from its amino acid sequence, is a half-a-century-old problem in biology. The function of the protein correlates with its structure, emphasizing the need to study protein folding to understand the cellular and molecular processes better. While recent AI-based methods have shown significant success in protein structure prediction, their accuracy diminishes with proteins of low sequence similarity. Classical simulations face challenges in generating extensive conformational samplings. In this work, we develop a novel turn-based encoding algorithm with more significant degrees of freedom that successfully runs on a gate-based quantum computer and predicts the structure of proteins of varied lengths utilizing up to 114 qubits (IBM hardware). To make the problem tractable in quantum computers, the protein sequences were described with the simplistic HP model (H = hydrophobic residues, P = polar residues). The proposed formulation successfully captures the so-called nucleation step in protein folding, the hydrophobic collapse, that brings the hydrophobic residues to the core of the protein. |
doi_str_mv | 10.1021/acs.jctc.4c00848 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3125484704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3145834657</sourcerecordid><originalsourceid>FETCH-LOGICAL-a247t-402091ddf1ea4dd64c2a83709148d98fdc496e60cc31bdff58c7b03a1b5652983</originalsourceid><addsrcrecordid>eNp1kEtrGzEURkVJifPadxUE2XSRcaXR1YxmmTqvQqAJbTfdDLJ0xxnjGTl6EPLvK9eOF4WudBHn--7lEPKJsylnJf-iTZguTTRTMIwpUB_IEZfQFE1VVgf7masJOQ5hyZgQUIpDMhGNZABSHJHfj95F7Ef6I_pkYvJIHz3a3sTejfS1j8_0vl8802tceMRAXUdv82DdQHNI0zsdsfiqA1r6lPQY00BnbliniP6UfOz0KuDZ7j0hv25vfs7ui4fvd99mVw-FLqGOBbCSNdzajqMGayswpVaizn-gbKM6a6CpsGLGCD63XSeVqedMaD6XlSwbJU7I523v2ruXhCG2Qx8MrlZ6RJdCK3gpQUHNIKMX_6BLl_yYr8sUSCWgknWm2JYy3oXgsWvXvh-0f2s5azfe2-y93Xhvd95z5HxXnOYD2n3gXXQGLrfA3-j70v_2_QHktY2O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3145834657</pqid></control><display><type>article</type><title>Protein Structure Prediction with High Degrees of Freedom in a Gate-Based Quantum Computer</title><source>ACS Publications</source><creator>Pamidimukkala, Jaya Vasavi ; Bopardikar, Soham ; Dakshinamoorthy, Avinash ; Kannan, Ashwini ; Dasgupta, Kalyan ; Senapati, Sanjib</creator><creatorcontrib>Pamidimukkala, Jaya Vasavi ; Bopardikar, Soham ; Dakshinamoorthy, Avinash ; Kannan, Ashwini ; Dasgupta, Kalyan ; Senapati, Sanjib</creatorcontrib><description>Protein folding, which traces the protein three-dimensional (3D) structure from its amino acid sequence, is a half-a-century-old problem in biology. The function of the protein correlates with its structure, emphasizing the need to study protein folding to understand the cellular and molecular processes better. While recent AI-based methods have shown significant success in protein structure prediction, their accuracy diminishes with proteins of low sequence similarity. Classical simulations face challenges in generating extensive conformational samplings. In this work, we develop a novel turn-based encoding algorithm with more significant degrees of freedom that successfully runs on a gate-based quantum computer and predicts the structure of proteins of varied lengths utilizing up to 114 qubits (IBM hardware). To make the problem tractable in quantum computers, the protein sequences were described with the simplistic HP model (H = hydrophobic residues, P = polar residues). The proposed formulation successfully captures the so-called nucleation step in protein folding, the hydrophobic collapse, that brings the hydrophobic residues to the core of the protein.</description><identifier>ISSN: 1549-9618</identifier><identifier>ISSN: 1549-9626</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.4c00848</identifier><identifier>PMID: 39504453</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Algorithms ; Amino acids ; Biomolecular Systems ; Cellular structure ; Degrees of freedom ; Folding ; Hydrophobicity ; Nucleation ; Protein folding ; Proteins ; Quantum computers ; Quantum computing ; Qubits (quantum computing) ; Residues</subject><ispartof>Journal of chemical theory and computation, 2024-11, Vol.20 (22), p.10223-10234</ispartof><rights>2024 American Chemical Society</rights><rights>Copyright American Chemical Society Nov 26, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a247t-402091ddf1ea4dd64c2a83709148d98fdc496e60cc31bdff58c7b03a1b5652983</cites><orcidid>0000-0002-6671-8299</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jctc.4c00848$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jctc.4c00848$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2764,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39504453$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pamidimukkala, Jaya Vasavi</creatorcontrib><creatorcontrib>Bopardikar, Soham</creatorcontrib><creatorcontrib>Dakshinamoorthy, Avinash</creatorcontrib><creatorcontrib>Kannan, Ashwini</creatorcontrib><creatorcontrib>Dasgupta, Kalyan</creatorcontrib><creatorcontrib>Senapati, Sanjib</creatorcontrib><title>Protein Structure Prediction with High Degrees of Freedom in a Gate-Based Quantum Computer</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>Protein folding, which traces the protein three-dimensional (3D) structure from its amino acid sequence, is a half-a-century-old problem in biology. The function of the protein correlates with its structure, emphasizing the need to study protein folding to understand the cellular and molecular processes better. While recent AI-based methods have shown significant success in protein structure prediction, their accuracy diminishes with proteins of low sequence similarity. Classical simulations face challenges in generating extensive conformational samplings. In this work, we develop a novel turn-based encoding algorithm with more significant degrees of freedom that successfully runs on a gate-based quantum computer and predicts the structure of proteins of varied lengths utilizing up to 114 qubits (IBM hardware). To make the problem tractable in quantum computers, the protein sequences were described with the simplistic HP model (H = hydrophobic residues, P = polar residues). The proposed formulation successfully captures the so-called nucleation step in protein folding, the hydrophobic collapse, that brings the hydrophobic residues to the core of the protein.</description><subject>Algorithms</subject><subject>Amino acids</subject><subject>Biomolecular Systems</subject><subject>Cellular structure</subject><subject>Degrees of freedom</subject><subject>Folding</subject><subject>Hydrophobicity</subject><subject>Nucleation</subject><subject>Protein folding</subject><subject>Proteins</subject><subject>Quantum computers</subject><subject>Quantum computing</subject><subject>Qubits (quantum computing)</subject><subject>Residues</subject><issn>1549-9618</issn><issn>1549-9626</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kEtrGzEURkVJifPadxUE2XSRcaXR1YxmmTqvQqAJbTfdDLJ0xxnjGTl6EPLvK9eOF4WudBHn--7lEPKJsylnJf-iTZguTTRTMIwpUB_IEZfQFE1VVgf7masJOQ5hyZgQUIpDMhGNZABSHJHfj95F7Ef6I_pkYvJIHz3a3sTejfS1j8_0vl8802tceMRAXUdv82DdQHNI0zsdsfiqA1r6lPQY00BnbliniP6UfOz0KuDZ7j0hv25vfs7ui4fvd99mVw-FLqGOBbCSNdzajqMGayswpVaizn-gbKM6a6CpsGLGCD63XSeVqedMaD6XlSwbJU7I523v2ruXhCG2Qx8MrlZ6RJdCK3gpQUHNIKMX_6BLl_yYr8sUSCWgknWm2JYy3oXgsWvXvh-0f2s5azfe2-y93Xhvd95z5HxXnOYD2n3gXXQGLrfA3-j70v_2_QHktY2O</recordid><startdate>20241126</startdate><enddate>20241126</enddate><creator>Pamidimukkala, Jaya Vasavi</creator><creator>Bopardikar, Soham</creator><creator>Dakshinamoorthy, Avinash</creator><creator>Kannan, Ashwini</creator><creator>Dasgupta, Kalyan</creator><creator>Senapati, Sanjib</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6671-8299</orcidid></search><sort><creationdate>20241126</creationdate><title>Protein Structure Prediction with High Degrees of Freedom in a Gate-Based Quantum Computer</title><author>Pamidimukkala, Jaya Vasavi ; Bopardikar, Soham ; Dakshinamoorthy, Avinash ; Kannan, Ashwini ; Dasgupta, Kalyan ; Senapati, Sanjib</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a247t-402091ddf1ea4dd64c2a83709148d98fdc496e60cc31bdff58c7b03a1b5652983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Amino acids</topic><topic>Biomolecular Systems</topic><topic>Cellular structure</topic><topic>Degrees of freedom</topic><topic>Folding</topic><topic>Hydrophobicity</topic><topic>Nucleation</topic><topic>Protein folding</topic><topic>Proteins</topic><topic>Quantum computers</topic><topic>Quantum computing</topic><topic>Qubits (quantum computing)</topic><topic>Residues</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pamidimukkala, Jaya Vasavi</creatorcontrib><creatorcontrib>Bopardikar, Soham</creatorcontrib><creatorcontrib>Dakshinamoorthy, Avinash</creatorcontrib><creatorcontrib>Kannan, Ashwini</creatorcontrib><creatorcontrib>Dasgupta, Kalyan</creatorcontrib><creatorcontrib>Senapati, Sanjib</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pamidimukkala, Jaya Vasavi</au><au>Bopardikar, Soham</au><au>Dakshinamoorthy, Avinash</au><au>Kannan, Ashwini</au><au>Dasgupta, Kalyan</au><au>Senapati, Sanjib</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Protein Structure Prediction with High Degrees of Freedom in a Gate-Based Quantum Computer</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2024-11-26</date><risdate>2024</risdate><volume>20</volume><issue>22</issue><spage>10223</spage><epage>10234</epage><pages>10223-10234</pages><issn>1549-9618</issn><issn>1549-9626</issn><eissn>1549-9626</eissn><abstract>Protein folding, which traces the protein three-dimensional (3D) structure from its amino acid sequence, is a half-a-century-old problem in biology. The function of the protein correlates with its structure, emphasizing the need to study protein folding to understand the cellular and molecular processes better. While recent AI-based methods have shown significant success in protein structure prediction, their accuracy diminishes with proteins of low sequence similarity. Classical simulations face challenges in generating extensive conformational samplings. In this work, we develop a novel turn-based encoding algorithm with more significant degrees of freedom that successfully runs on a gate-based quantum computer and predicts the structure of proteins of varied lengths utilizing up to 114 qubits (IBM hardware). To make the problem tractable in quantum computers, the protein sequences were described with the simplistic HP model (H = hydrophobic residues, P = polar residues). The proposed formulation successfully captures the so-called nucleation step in protein folding, the hydrophobic collapse, that brings the hydrophobic residues to the core of the protein.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39504453</pmid><doi>10.1021/acs.jctc.4c00848</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6671-8299</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9618 |
ispartof | Journal of chemical theory and computation, 2024-11, Vol.20 (22), p.10223-10234 |
issn | 1549-9618 1549-9626 1549-9626 |
language | eng |
recordid | cdi_proquest_miscellaneous_3125484704 |
source | ACS Publications |
subjects | Algorithms Amino acids Biomolecular Systems Cellular structure Degrees of freedom Folding Hydrophobicity Nucleation Protein folding Proteins Quantum computers Quantum computing Qubits (quantum computing) Residues |
title | Protein Structure Prediction with High Degrees of Freedom in a Gate-Based Quantum Computer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A09%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Protein%20Structure%20Prediction%20with%20High%20Degrees%20of%20Freedom%20in%20a%20Gate-Based%20Quantum%20Computer&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Pamidimukkala,%20Jaya%20Vasavi&rft.date=2024-11-26&rft.volume=20&rft.issue=22&rft.spage=10223&rft.epage=10234&rft.pages=10223-10234&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.4c00848&rft_dat=%3Cproquest_cross%3E3145834657%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3145834657&rft_id=info:pmid/39504453&rfr_iscdi=true |