Protein Structure Prediction with High Degrees of Freedom in a Gate-Based Quantum Computer

Protein folding, which traces the protein three-dimensional (3D) structure from its amino acid sequence, is a half-a-century-old problem in biology. The function of the protein correlates with its structure, emphasizing the need to study protein folding to understand the cellular and molecular proce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical theory and computation 2024-11, Vol.20 (22), p.10223-10234
Hauptverfasser: Pamidimukkala, Jaya Vasavi, Bopardikar, Soham, Dakshinamoorthy, Avinash, Kannan, Ashwini, Dasgupta, Kalyan, Senapati, Sanjib
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10234
container_issue 22
container_start_page 10223
container_title Journal of chemical theory and computation
container_volume 20
creator Pamidimukkala, Jaya Vasavi
Bopardikar, Soham
Dakshinamoorthy, Avinash
Kannan, Ashwini
Dasgupta, Kalyan
Senapati, Sanjib
description Protein folding, which traces the protein three-dimensional (3D) structure from its amino acid sequence, is a half-a-century-old problem in biology. The function of the protein correlates with its structure, emphasizing the need to study protein folding to understand the cellular and molecular processes better. While recent AI-based methods have shown significant success in protein structure prediction, their accuracy diminishes with proteins of low sequence similarity. Classical simulations face challenges in generating extensive conformational samplings. In this work, we develop a novel turn-based encoding algorithm with more significant degrees of freedom that successfully runs on a gate-based quantum computer and predicts the structure of proteins of varied lengths utilizing up to 114 qubits (IBM hardware). To make the problem tractable in quantum computers, the protein sequences were described with the simplistic HP model (H = hydrophobic residues, P = polar residues). The proposed formulation successfully captures the so-called nucleation step in protein folding, the hydrophobic collapse, that brings the hydrophobic residues to the core of the protein.
doi_str_mv 10.1021/acs.jctc.4c00848
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3125484704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3145834657</sourcerecordid><originalsourceid>FETCH-LOGICAL-a247t-402091ddf1ea4dd64c2a83709148d98fdc496e60cc31bdff58c7b03a1b5652983</originalsourceid><addsrcrecordid>eNp1kEtrGzEURkVJifPadxUE2XSRcaXR1YxmmTqvQqAJbTfdDLJ0xxnjGTl6EPLvK9eOF4WudBHn--7lEPKJsylnJf-iTZguTTRTMIwpUB_IEZfQFE1VVgf7masJOQ5hyZgQUIpDMhGNZABSHJHfj95F7Ef6I_pkYvJIHz3a3sTejfS1j8_0vl8802tceMRAXUdv82DdQHNI0zsdsfiqA1r6lPQY00BnbliniP6UfOz0KuDZ7j0hv25vfs7ui4fvd99mVw-FLqGOBbCSNdzajqMGayswpVaizn-gbKM6a6CpsGLGCD63XSeVqedMaD6XlSwbJU7I523v2ruXhCG2Qx8MrlZ6RJdCK3gpQUHNIKMX_6BLl_yYr8sUSCWgknWm2JYy3oXgsWvXvh-0f2s5azfe2-y93Xhvd95z5HxXnOYD2n3gXXQGLrfA3-j70v_2_QHktY2O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3145834657</pqid></control><display><type>article</type><title>Protein Structure Prediction with High Degrees of Freedom in a Gate-Based Quantum Computer</title><source>ACS Publications</source><creator>Pamidimukkala, Jaya Vasavi ; Bopardikar, Soham ; Dakshinamoorthy, Avinash ; Kannan, Ashwini ; Dasgupta, Kalyan ; Senapati, Sanjib</creator><creatorcontrib>Pamidimukkala, Jaya Vasavi ; Bopardikar, Soham ; Dakshinamoorthy, Avinash ; Kannan, Ashwini ; Dasgupta, Kalyan ; Senapati, Sanjib</creatorcontrib><description>Protein folding, which traces the protein three-dimensional (3D) structure from its amino acid sequence, is a half-a-century-old problem in biology. The function of the protein correlates with its structure, emphasizing the need to study protein folding to understand the cellular and molecular processes better. While recent AI-based methods have shown significant success in protein structure prediction, their accuracy diminishes with proteins of low sequence similarity. Classical simulations face challenges in generating extensive conformational samplings. In this work, we develop a novel turn-based encoding algorithm with more significant degrees of freedom that successfully runs on a gate-based quantum computer and predicts the structure of proteins of varied lengths utilizing up to 114 qubits (IBM hardware). To make the problem tractable in quantum computers, the protein sequences were described with the simplistic HP model (H = hydrophobic residues, P = polar residues). The proposed formulation successfully captures the so-called nucleation step in protein folding, the hydrophobic collapse, that brings the hydrophobic residues to the core of the protein.</description><identifier>ISSN: 1549-9618</identifier><identifier>ISSN: 1549-9626</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.4c00848</identifier><identifier>PMID: 39504453</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Algorithms ; Amino acids ; Biomolecular Systems ; Cellular structure ; Degrees of freedom ; Folding ; Hydrophobicity ; Nucleation ; Protein folding ; Proteins ; Quantum computers ; Quantum computing ; Qubits (quantum computing) ; Residues</subject><ispartof>Journal of chemical theory and computation, 2024-11, Vol.20 (22), p.10223-10234</ispartof><rights>2024 American Chemical Society</rights><rights>Copyright American Chemical Society Nov 26, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a247t-402091ddf1ea4dd64c2a83709148d98fdc496e60cc31bdff58c7b03a1b5652983</cites><orcidid>0000-0002-6671-8299</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jctc.4c00848$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jctc.4c00848$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2764,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39504453$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pamidimukkala, Jaya Vasavi</creatorcontrib><creatorcontrib>Bopardikar, Soham</creatorcontrib><creatorcontrib>Dakshinamoorthy, Avinash</creatorcontrib><creatorcontrib>Kannan, Ashwini</creatorcontrib><creatorcontrib>Dasgupta, Kalyan</creatorcontrib><creatorcontrib>Senapati, Sanjib</creatorcontrib><title>Protein Structure Prediction with High Degrees of Freedom in a Gate-Based Quantum Computer</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>Protein folding, which traces the protein three-dimensional (3D) structure from its amino acid sequence, is a half-a-century-old problem in biology. The function of the protein correlates with its structure, emphasizing the need to study protein folding to understand the cellular and molecular processes better. While recent AI-based methods have shown significant success in protein structure prediction, their accuracy diminishes with proteins of low sequence similarity. Classical simulations face challenges in generating extensive conformational samplings. In this work, we develop a novel turn-based encoding algorithm with more significant degrees of freedom that successfully runs on a gate-based quantum computer and predicts the structure of proteins of varied lengths utilizing up to 114 qubits (IBM hardware). To make the problem tractable in quantum computers, the protein sequences were described with the simplistic HP model (H = hydrophobic residues, P = polar residues). The proposed formulation successfully captures the so-called nucleation step in protein folding, the hydrophobic collapse, that brings the hydrophobic residues to the core of the protein.</description><subject>Algorithms</subject><subject>Amino acids</subject><subject>Biomolecular Systems</subject><subject>Cellular structure</subject><subject>Degrees of freedom</subject><subject>Folding</subject><subject>Hydrophobicity</subject><subject>Nucleation</subject><subject>Protein folding</subject><subject>Proteins</subject><subject>Quantum computers</subject><subject>Quantum computing</subject><subject>Qubits (quantum computing)</subject><subject>Residues</subject><issn>1549-9618</issn><issn>1549-9626</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kEtrGzEURkVJifPadxUE2XSRcaXR1YxmmTqvQqAJbTfdDLJ0xxnjGTl6EPLvK9eOF4WudBHn--7lEPKJsylnJf-iTZguTTRTMIwpUB_IEZfQFE1VVgf7masJOQ5hyZgQUIpDMhGNZABSHJHfj95F7Ef6I_pkYvJIHz3a3sTejfS1j8_0vl8802tceMRAXUdv82DdQHNI0zsdsfiqA1r6lPQY00BnbliniP6UfOz0KuDZ7j0hv25vfs7ui4fvd99mVw-FLqGOBbCSNdzajqMGayswpVaizn-gbKM6a6CpsGLGCD63XSeVqedMaD6XlSwbJU7I523v2ruXhCG2Qx8MrlZ6RJdCK3gpQUHNIKMX_6BLl_yYr8sUSCWgknWm2JYy3oXgsWvXvh-0f2s5azfe2-y93Xhvd95z5HxXnOYD2n3gXXQGLrfA3-j70v_2_QHktY2O</recordid><startdate>20241126</startdate><enddate>20241126</enddate><creator>Pamidimukkala, Jaya Vasavi</creator><creator>Bopardikar, Soham</creator><creator>Dakshinamoorthy, Avinash</creator><creator>Kannan, Ashwini</creator><creator>Dasgupta, Kalyan</creator><creator>Senapati, Sanjib</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6671-8299</orcidid></search><sort><creationdate>20241126</creationdate><title>Protein Structure Prediction with High Degrees of Freedom in a Gate-Based Quantum Computer</title><author>Pamidimukkala, Jaya Vasavi ; Bopardikar, Soham ; Dakshinamoorthy, Avinash ; Kannan, Ashwini ; Dasgupta, Kalyan ; Senapati, Sanjib</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a247t-402091ddf1ea4dd64c2a83709148d98fdc496e60cc31bdff58c7b03a1b5652983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Amino acids</topic><topic>Biomolecular Systems</topic><topic>Cellular structure</topic><topic>Degrees of freedom</topic><topic>Folding</topic><topic>Hydrophobicity</topic><topic>Nucleation</topic><topic>Protein folding</topic><topic>Proteins</topic><topic>Quantum computers</topic><topic>Quantum computing</topic><topic>Qubits (quantum computing)</topic><topic>Residues</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pamidimukkala, Jaya Vasavi</creatorcontrib><creatorcontrib>Bopardikar, Soham</creatorcontrib><creatorcontrib>Dakshinamoorthy, Avinash</creatorcontrib><creatorcontrib>Kannan, Ashwini</creatorcontrib><creatorcontrib>Dasgupta, Kalyan</creatorcontrib><creatorcontrib>Senapati, Sanjib</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pamidimukkala, Jaya Vasavi</au><au>Bopardikar, Soham</au><au>Dakshinamoorthy, Avinash</au><au>Kannan, Ashwini</au><au>Dasgupta, Kalyan</au><au>Senapati, Sanjib</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Protein Structure Prediction with High Degrees of Freedom in a Gate-Based Quantum Computer</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2024-11-26</date><risdate>2024</risdate><volume>20</volume><issue>22</issue><spage>10223</spage><epage>10234</epage><pages>10223-10234</pages><issn>1549-9618</issn><issn>1549-9626</issn><eissn>1549-9626</eissn><abstract>Protein folding, which traces the protein three-dimensional (3D) structure from its amino acid sequence, is a half-a-century-old problem in biology. The function of the protein correlates with its structure, emphasizing the need to study protein folding to understand the cellular and molecular processes better. While recent AI-based methods have shown significant success in protein structure prediction, their accuracy diminishes with proteins of low sequence similarity. Classical simulations face challenges in generating extensive conformational samplings. In this work, we develop a novel turn-based encoding algorithm with more significant degrees of freedom that successfully runs on a gate-based quantum computer and predicts the structure of proteins of varied lengths utilizing up to 114 qubits (IBM hardware). To make the problem tractable in quantum computers, the protein sequences were described with the simplistic HP model (H = hydrophobic residues, P = polar residues). The proposed formulation successfully captures the so-called nucleation step in protein folding, the hydrophobic collapse, that brings the hydrophobic residues to the core of the protein.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39504453</pmid><doi>10.1021/acs.jctc.4c00848</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6671-8299</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1549-9618
ispartof Journal of chemical theory and computation, 2024-11, Vol.20 (22), p.10223-10234
issn 1549-9618
1549-9626
1549-9626
language eng
recordid cdi_proquest_miscellaneous_3125484704
source ACS Publications
subjects Algorithms
Amino acids
Biomolecular Systems
Cellular structure
Degrees of freedom
Folding
Hydrophobicity
Nucleation
Protein folding
Proteins
Quantum computers
Quantum computing
Qubits (quantum computing)
Residues
title Protein Structure Prediction with High Degrees of Freedom in a Gate-Based Quantum Computer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A09%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Protein%20Structure%20Prediction%20with%20High%20Degrees%20of%20Freedom%20in%20a%20Gate-Based%20Quantum%20Computer&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Pamidimukkala,%20Jaya%20Vasavi&rft.date=2024-11-26&rft.volume=20&rft.issue=22&rft.spage=10223&rft.epage=10234&rft.pages=10223-10234&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.4c00848&rft_dat=%3Cproquest_cross%3E3145834657%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3145834657&rft_id=info:pmid/39504453&rfr_iscdi=true