Direct Three-Dimensional Observation of the Plasmonic Near-Fields of a Nanoparticle with Circular Dichroism

Characterizing the spatial distribution of the electromagnetic fields of a plasmonic nanoparticle is crucial for exploiting its strong light–matter interaction for optoelectronic and catalytic applications. However, observing the near-fields in three dimensions with a high spatial resolution is stil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2024-11, Vol.18 (47), p.32769-32780
Hauptverfasser: Jo, Jaeyeon, Ryu, Jinseok, Huh, Ji-Hyeok, Kim, Hyeohn, Seo, Da Hye, Lee, Jaewon, Kwon, Min, Lee, Seungwoo, Nam, Ki Tae, Kim, Miyoung
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 32780
container_issue 47
container_start_page 32769
container_title ACS nano
container_volume 18
creator Jo, Jaeyeon
Ryu, Jinseok
Huh, Ji-Hyeok
Kim, Hyeohn
Seo, Da Hye
Lee, Jaewon
Kwon, Min
Lee, Seungwoo
Nam, Ki Tae
Kim, Miyoung
description Characterizing the spatial distribution of the electromagnetic fields of a plasmonic nanoparticle is crucial for exploiting its strong light–matter interaction for optoelectronic and catalytic applications. However, observing the near-fields in three dimensions with a high spatial resolution is still challenging. To realize efficient three-dimensional (3D) nanoscale mapping of the plasmonic fields of nanoparticles with complex shapes, this work established autoencoder-embedded electron energy loss spectroscopy (EELS) tomography. A 432-symmetric chiral gold nanoparticle, a nanoparticle with a high optical dissymmetry factor, was analyzed to relate its geometrical features to its exotic optical properties. Our deep-learning-based feature extraction method discriminated plasmons with different energies in the EEL spectra of the nanoparticle in which signals from multiple plasmons were intermixed; this component was key for acceptable 3D visualization of each plasmonic field separately using EELS tomography. With this methodology, the electric field of the plasmon that induces far-field circular dichroism was observed in 3D. The field linked to this chiroptical property was strong along the swirling edges of the particle, as predicted by a numerical calculation. This study provides insight into the correlation between structural and optical chiralities through direct 3D observation of the plasmonic fields. Furthermore, the strategy of implementing an autoencoder for EELS tomography can be generalized to achieve competent 3D analysis of other features, including the optical properties of the dielectrics and chemical states.
doi_str_mv 10.1021/acsnano.4c10677
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3124691501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3124691501</sourcerecordid><originalsourceid>FETCH-LOGICAL-a217t-38867fd7f414625eaf62f11510305a1e2c106e15978eb3920c6a9415e160fe433</originalsourceid><addsrcrecordid>eNp1kMFLwzAUh4Mobk7P3iRHQbrlNU3aHmVzKsjmYYK3kmWvNLNtZtIq_vd2rO7mKQn5fj_e-wi5BjYGFsJEaV-r2o4jDUzG8QkZQsplwBL5fnq8CxiQC--3jIk4ieU5GfBUMC5BDsnHzDjUDV0VDjGYmQprb2ytSrpce3Rfqule1Oa0KZC-lspXtjaaLlC5YG6w3Pj9p6KLboqdco3RJdJv0xR0apxuS-XozOjCWeOrS3KWq9LjVX-OyNv8YTV9Cl6Wj8_T-5dAhRA3AU8SGeebOI8gkqFAlcswBxDAOBMKMNzviiDSOME1T0OmpUojEAiS5RhxPiK3h96ds58t-iarjNdYlqpG2_qMQxjJFASDDp0cUO2s9w7zbOdMpdxPBizbG856w1lvuEvc9OXtusLNkf9T2gF3B6BLZlvbuk6m_7fuF1TuhqM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3124691501</pqid></control><display><type>article</type><title>Direct Three-Dimensional Observation of the Plasmonic Near-Fields of a Nanoparticle with Circular Dichroism</title><source>ACS Publications</source><creator>Jo, Jaeyeon ; Ryu, Jinseok ; Huh, Ji-Hyeok ; Kim, Hyeohn ; Seo, Da Hye ; Lee, Jaewon ; Kwon, Min ; Lee, Seungwoo ; Nam, Ki Tae ; Kim, Miyoung</creator><creatorcontrib>Jo, Jaeyeon ; Ryu, Jinseok ; Huh, Ji-Hyeok ; Kim, Hyeohn ; Seo, Da Hye ; Lee, Jaewon ; Kwon, Min ; Lee, Seungwoo ; Nam, Ki Tae ; Kim, Miyoung</creatorcontrib><description>Characterizing the spatial distribution of the electromagnetic fields of a plasmonic nanoparticle is crucial for exploiting its strong light–matter interaction for optoelectronic and catalytic applications. However, observing the near-fields in three dimensions with a high spatial resolution is still challenging. To realize efficient three-dimensional (3D) nanoscale mapping of the plasmonic fields of nanoparticles with complex shapes, this work established autoencoder-embedded electron energy loss spectroscopy (EELS) tomography. A 432-symmetric chiral gold nanoparticle, a nanoparticle with a high optical dissymmetry factor, was analyzed to relate its geometrical features to its exotic optical properties. Our deep-learning-based feature extraction method discriminated plasmons with different energies in the EEL spectra of the nanoparticle in which signals from multiple plasmons were intermixed; this component was key for acceptable 3D visualization of each plasmonic field separately using EELS tomography. With this methodology, the electric field of the plasmon that induces far-field circular dichroism was observed in 3D. The field linked to this chiroptical property was strong along the swirling edges of the particle, as predicted by a numerical calculation. This study provides insight into the correlation between structural and optical chiralities through direct 3D observation of the plasmonic fields. Furthermore, the strategy of implementing an autoencoder for EELS tomography can be generalized to achieve competent 3D analysis of other features, including the optical properties of the dielectrics and chemical states.</description><identifier>ISSN: 1936-0851</identifier><identifier>ISSN: 1936-086X</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.4c10677</identifier><identifier>PMID: 39503616</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2024-11, Vol.18 (47), p.32769-32780</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a217t-38867fd7f414625eaf62f11510305a1e2c106e15978eb3920c6a9415e160fe433</cites><orcidid>0000-0003-0982-042X ; 0000-0001-6353-8877 ; 0000-0002-9558-3469 ; 0000-0001-8632-6711 ; 0000-0002-6659-3457</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.4c10677$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.4c10677$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39503616$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jo, Jaeyeon</creatorcontrib><creatorcontrib>Ryu, Jinseok</creatorcontrib><creatorcontrib>Huh, Ji-Hyeok</creatorcontrib><creatorcontrib>Kim, Hyeohn</creatorcontrib><creatorcontrib>Seo, Da Hye</creatorcontrib><creatorcontrib>Lee, Jaewon</creatorcontrib><creatorcontrib>Kwon, Min</creatorcontrib><creatorcontrib>Lee, Seungwoo</creatorcontrib><creatorcontrib>Nam, Ki Tae</creatorcontrib><creatorcontrib>Kim, Miyoung</creatorcontrib><title>Direct Three-Dimensional Observation of the Plasmonic Near-Fields of a Nanoparticle with Circular Dichroism</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Characterizing the spatial distribution of the electromagnetic fields of a plasmonic nanoparticle is crucial for exploiting its strong light–matter interaction for optoelectronic and catalytic applications. However, observing the near-fields in three dimensions with a high spatial resolution is still challenging. To realize efficient three-dimensional (3D) nanoscale mapping of the plasmonic fields of nanoparticles with complex shapes, this work established autoencoder-embedded electron energy loss spectroscopy (EELS) tomography. A 432-symmetric chiral gold nanoparticle, a nanoparticle with a high optical dissymmetry factor, was analyzed to relate its geometrical features to its exotic optical properties. Our deep-learning-based feature extraction method discriminated plasmons with different energies in the EEL spectra of the nanoparticle in which signals from multiple plasmons were intermixed; this component was key for acceptable 3D visualization of each plasmonic field separately using EELS tomography. With this methodology, the electric field of the plasmon that induces far-field circular dichroism was observed in 3D. The field linked to this chiroptical property was strong along the swirling edges of the particle, as predicted by a numerical calculation. This study provides insight into the correlation between structural and optical chiralities through direct 3D observation of the plasmonic fields. Furthermore, the strategy of implementing an autoencoder for EELS tomography can be generalized to achieve competent 3D analysis of other features, including the optical properties of the dielectrics and chemical states.</description><issn>1936-0851</issn><issn>1936-086X</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kMFLwzAUh4Mobk7P3iRHQbrlNU3aHmVzKsjmYYK3kmWvNLNtZtIq_vd2rO7mKQn5fj_e-wi5BjYGFsJEaV-r2o4jDUzG8QkZQsplwBL5fnq8CxiQC--3jIk4ieU5GfBUMC5BDsnHzDjUDV0VDjGYmQprb2ytSrpce3Rfqule1Oa0KZC-lspXtjaaLlC5YG6w3Pj9p6KLboqdco3RJdJv0xR0apxuS-XozOjCWeOrS3KWq9LjVX-OyNv8YTV9Cl6Wj8_T-5dAhRA3AU8SGeebOI8gkqFAlcswBxDAOBMKMNzviiDSOME1T0OmpUojEAiS5RhxPiK3h96ds58t-iarjNdYlqpG2_qMQxjJFASDDp0cUO2s9w7zbOdMpdxPBizbG856w1lvuEvc9OXtusLNkf9T2gF3B6BLZlvbuk6m_7fuF1TuhqM</recordid><startdate>20241126</startdate><enddate>20241126</enddate><creator>Jo, Jaeyeon</creator><creator>Ryu, Jinseok</creator><creator>Huh, Ji-Hyeok</creator><creator>Kim, Hyeohn</creator><creator>Seo, Da Hye</creator><creator>Lee, Jaewon</creator><creator>Kwon, Min</creator><creator>Lee, Seungwoo</creator><creator>Nam, Ki Tae</creator><creator>Kim, Miyoung</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0982-042X</orcidid><orcidid>https://orcid.org/0000-0001-6353-8877</orcidid><orcidid>https://orcid.org/0000-0002-9558-3469</orcidid><orcidid>https://orcid.org/0000-0001-8632-6711</orcidid><orcidid>https://orcid.org/0000-0002-6659-3457</orcidid></search><sort><creationdate>20241126</creationdate><title>Direct Three-Dimensional Observation of the Plasmonic Near-Fields of a Nanoparticle with Circular Dichroism</title><author>Jo, Jaeyeon ; Ryu, Jinseok ; Huh, Ji-Hyeok ; Kim, Hyeohn ; Seo, Da Hye ; Lee, Jaewon ; Kwon, Min ; Lee, Seungwoo ; Nam, Ki Tae ; Kim, Miyoung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a217t-38867fd7f414625eaf62f11510305a1e2c106e15978eb3920c6a9415e160fe433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jo, Jaeyeon</creatorcontrib><creatorcontrib>Ryu, Jinseok</creatorcontrib><creatorcontrib>Huh, Ji-Hyeok</creatorcontrib><creatorcontrib>Kim, Hyeohn</creatorcontrib><creatorcontrib>Seo, Da Hye</creatorcontrib><creatorcontrib>Lee, Jaewon</creatorcontrib><creatorcontrib>Kwon, Min</creatorcontrib><creatorcontrib>Lee, Seungwoo</creatorcontrib><creatorcontrib>Nam, Ki Tae</creatorcontrib><creatorcontrib>Kim, Miyoung</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jo, Jaeyeon</au><au>Ryu, Jinseok</au><au>Huh, Ji-Hyeok</au><au>Kim, Hyeohn</au><au>Seo, Da Hye</au><au>Lee, Jaewon</au><au>Kwon, Min</au><au>Lee, Seungwoo</au><au>Nam, Ki Tae</au><au>Kim, Miyoung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct Three-Dimensional Observation of the Plasmonic Near-Fields of a Nanoparticle with Circular Dichroism</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2024-11-26</date><risdate>2024</risdate><volume>18</volume><issue>47</issue><spage>32769</spage><epage>32780</epage><pages>32769-32780</pages><issn>1936-0851</issn><issn>1936-086X</issn><eissn>1936-086X</eissn><abstract>Characterizing the spatial distribution of the electromagnetic fields of a plasmonic nanoparticle is crucial for exploiting its strong light–matter interaction for optoelectronic and catalytic applications. However, observing the near-fields in three dimensions with a high spatial resolution is still challenging. To realize efficient three-dimensional (3D) nanoscale mapping of the plasmonic fields of nanoparticles with complex shapes, this work established autoencoder-embedded electron energy loss spectroscopy (EELS) tomography. A 432-symmetric chiral gold nanoparticle, a nanoparticle with a high optical dissymmetry factor, was analyzed to relate its geometrical features to its exotic optical properties. Our deep-learning-based feature extraction method discriminated plasmons with different energies in the EEL spectra of the nanoparticle in which signals from multiple plasmons were intermixed; this component was key for acceptable 3D visualization of each plasmonic field separately using EELS tomography. With this methodology, the electric field of the plasmon that induces far-field circular dichroism was observed in 3D. The field linked to this chiroptical property was strong along the swirling edges of the particle, as predicted by a numerical calculation. This study provides insight into the correlation between structural and optical chiralities through direct 3D observation of the plasmonic fields. Furthermore, the strategy of implementing an autoencoder for EELS tomography can be generalized to achieve competent 3D analysis of other features, including the optical properties of the dielectrics and chemical states.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39503616</pmid><doi>10.1021/acsnano.4c10677</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0982-042X</orcidid><orcidid>https://orcid.org/0000-0001-6353-8877</orcidid><orcidid>https://orcid.org/0000-0002-9558-3469</orcidid><orcidid>https://orcid.org/0000-0001-8632-6711</orcidid><orcidid>https://orcid.org/0000-0002-6659-3457</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2024-11, Vol.18 (47), p.32769-32780
issn 1936-0851
1936-086X
1936-086X
language eng
recordid cdi_proquest_miscellaneous_3124691501
source ACS Publications
title Direct Three-Dimensional Observation of the Plasmonic Near-Fields of a Nanoparticle with Circular Dichroism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T07%3A46%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20Three-Dimensional%20Observation%20of%20the%20Plasmonic%20Near-Fields%20of%20a%20Nanoparticle%20with%20Circular%20Dichroism&rft.jtitle=ACS%20nano&rft.au=Jo,%20Jaeyeon&rft.date=2024-11-26&rft.volume=18&rft.issue=47&rft.spage=32769&rft.epage=32780&rft.pages=32769-32780&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.4c10677&rft_dat=%3Cproquest_cross%3E3124691501%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3124691501&rft_id=info:pmid/39503616&rfr_iscdi=true