Perovskite Thin-Film Transistors for Ultra-Low-Voltage Neuromorphic Visions

Perovskite thin-film transistors (TFTs) simultaneously possessing exceptional carrier transport capabilities, nonvolatile memory effects, and photosensitivity have recently attracted attention in fields of both complementary circuits and neuromorphic computing. Despite continuous performance improve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced science 2024-11, p.e2410015
Hauptverfasser: Rong, Yang, Yu, De, Zhang, Xin, Wang, Tao, Wang, Jie, Li, Yuheng, Zhao, Tongpeng, He, Ruiqin, Gao, Yuxin, Huang, Can, Xiao, Shumin, Qin, Jingkai, Bai, Sai, Zhu, Huihui, Liu, Ao, Chen, Yimu, Song, Qinghai
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page e2410015
container_title Advanced science
container_volume
creator Rong, Yang
Yu, De
Zhang, Xin
Wang, Tao
Wang, Jie
Li, Yuheng
Zhao, Tongpeng
He, Ruiqin
Gao, Yuxin
Huang, Can
Xiao, Shumin
Qin, Jingkai
Bai, Sai
Zhu, Huihui
Liu, Ao
Chen, Yimu
Song, Qinghai
description Perovskite thin-film transistors (TFTs) simultaneously possessing exceptional carrier transport capabilities, nonvolatile memory effects, and photosensitivity have recently attracted attention in fields of both complementary circuits and neuromorphic computing. Despite continuous performance improvements through additive and composition engineering of the channel materials, the equally crucial dielectric/channel interfaces of perovskite TFTs have remained underexplored. Here, it is demonstrated that engineering the dielectric/channel interface in 2D tin perovskite TFTs not only enhances the performance and operational stability for their utilization in complementary circuits but also enables efficient synaptic behaviors (optical information sensing and storage) under an extremely low operating voltage of -1 mV at the same time. The interface-engineered TFT arrays operating at -1 mV are then demonstrated as the preprocessing hardware for neuromorphic visions with pattern recognition accuracy of 92.2% and long-term memory capability. Such a low operating voltage provides operational feasibility to the design of large-scale-integrated and wearable/implantable neuromorphic hardware.
doi_str_mv 10.1002/advs.202410015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3124690801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3124690801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c220t-13eccc45e72a833f5b8bed908a6ebf7a895e7839d4aad1ba19908f60dc884def3</originalsourceid><addsrcrecordid>eNpNkE1PwkAQhjdGIwS5ejQ9einuV2F7NETQSNQDcG22u1NZbbu402L895aAxNPM5H3eOTyEXDM6YpTyO213OOKUy-5iyRnpc5aqWCgpz__tPTJE_KB7REwkU5ekJ9KEspSrPnl-g-B3-OkaiJYbV8czV1bRMugaHTY-YFT4EK3KJuh44b_jtS8b_Q7RC7TBVz5sN85Ea4fO13hFLgpdIgyPc0BWs4fl9DFevM6fpveL2HBOm5gJMMbIBCZcKyGKJFc52JQqPYa8mGiVdpESqZVaW5ZrlnZZMabWKCUtFGJAbg9_t8F_tYBNVjk0UJa6Bt9iJhiX465DWYeODqgJHjFAkW2Dq3T4yRjN9g6zvcPs5LAr3Bx_t3kF9oT_GRO_WFpt5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3124690801</pqid></control><display><type>article</type><title>Perovskite Thin-Film Transistors for Ultra-Low-Voltage Neuromorphic Visions</title><source>PubMed (Medline)</source><source>Wiley Online Library</source><source>Wiley Online Library (Open Access Collection)</source><source>Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Rong, Yang ; Yu, De ; Zhang, Xin ; Wang, Tao ; Wang, Jie ; Li, Yuheng ; Zhao, Tongpeng ; He, Ruiqin ; Gao, Yuxin ; Huang, Can ; Xiao, Shumin ; Qin, Jingkai ; Bai, Sai ; Zhu, Huihui ; Liu, Ao ; Chen, Yimu ; Song, Qinghai</creator><creatorcontrib>Rong, Yang ; Yu, De ; Zhang, Xin ; Wang, Tao ; Wang, Jie ; Li, Yuheng ; Zhao, Tongpeng ; He, Ruiqin ; Gao, Yuxin ; Huang, Can ; Xiao, Shumin ; Qin, Jingkai ; Bai, Sai ; Zhu, Huihui ; Liu, Ao ; Chen, Yimu ; Song, Qinghai</creatorcontrib><description>Perovskite thin-film transistors (TFTs) simultaneously possessing exceptional carrier transport capabilities, nonvolatile memory effects, and photosensitivity have recently attracted attention in fields of both complementary circuits and neuromorphic computing. Despite continuous performance improvements through additive and composition engineering of the channel materials, the equally crucial dielectric/channel interfaces of perovskite TFTs have remained underexplored. Here, it is demonstrated that engineering the dielectric/channel interface in 2D tin perovskite TFTs not only enhances the performance and operational stability for their utilization in complementary circuits but also enables efficient synaptic behaviors (optical information sensing and storage) under an extremely low operating voltage of -1 mV at the same time. The interface-engineered TFT arrays operating at -1 mV are then demonstrated as the preprocessing hardware for neuromorphic visions with pattern recognition accuracy of 92.2% and long-term memory capability. Such a low operating voltage provides operational feasibility to the design of large-scale-integrated and wearable/implantable neuromorphic hardware.</description><identifier>ISSN: 2198-3844</identifier><identifier>EISSN: 2198-3844</identifier><identifier>DOI: 10.1002/advs.202410015</identifier><identifier>PMID: 39501928</identifier><language>eng</language><publisher>Germany</publisher><ispartof>Advanced science, 2024-11, p.e2410015</ispartof><rights>2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c220t-13eccc45e72a833f5b8bed908a6ebf7a895e7839d4aad1ba19908f60dc884def3</cites><orcidid>0000-0001-5118-8048</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,865,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39501928$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rong, Yang</creatorcontrib><creatorcontrib>Yu, De</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Wang, Jie</creatorcontrib><creatorcontrib>Li, Yuheng</creatorcontrib><creatorcontrib>Zhao, Tongpeng</creatorcontrib><creatorcontrib>He, Ruiqin</creatorcontrib><creatorcontrib>Gao, Yuxin</creatorcontrib><creatorcontrib>Huang, Can</creatorcontrib><creatorcontrib>Xiao, Shumin</creatorcontrib><creatorcontrib>Qin, Jingkai</creatorcontrib><creatorcontrib>Bai, Sai</creatorcontrib><creatorcontrib>Zhu, Huihui</creatorcontrib><creatorcontrib>Liu, Ao</creatorcontrib><creatorcontrib>Chen, Yimu</creatorcontrib><creatorcontrib>Song, Qinghai</creatorcontrib><title>Perovskite Thin-Film Transistors for Ultra-Low-Voltage Neuromorphic Visions</title><title>Advanced science</title><addtitle>Adv Sci (Weinh)</addtitle><description>Perovskite thin-film transistors (TFTs) simultaneously possessing exceptional carrier transport capabilities, nonvolatile memory effects, and photosensitivity have recently attracted attention in fields of both complementary circuits and neuromorphic computing. Despite continuous performance improvements through additive and composition engineering of the channel materials, the equally crucial dielectric/channel interfaces of perovskite TFTs have remained underexplored. Here, it is demonstrated that engineering the dielectric/channel interface in 2D tin perovskite TFTs not only enhances the performance and operational stability for their utilization in complementary circuits but also enables efficient synaptic behaviors (optical information sensing and storage) under an extremely low operating voltage of -1 mV at the same time. The interface-engineered TFT arrays operating at -1 mV are then demonstrated as the preprocessing hardware for neuromorphic visions with pattern recognition accuracy of 92.2% and long-term memory capability. Such a low operating voltage provides operational feasibility to the design of large-scale-integrated and wearable/implantable neuromorphic hardware.</description><issn>2198-3844</issn><issn>2198-3844</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkE1PwkAQhjdGIwS5ejQ9einuV2F7NETQSNQDcG22u1NZbbu402L895aAxNPM5H3eOTyEXDM6YpTyO213OOKUy-5iyRnpc5aqWCgpz__tPTJE_KB7REwkU5ekJ9KEspSrPnl-g-B3-OkaiJYbV8czV1bRMugaHTY-YFT4EK3KJuh44b_jtS8b_Q7RC7TBVz5sN85Ea4fO13hFLgpdIgyPc0BWs4fl9DFevM6fpveL2HBOm5gJMMbIBCZcKyGKJFc52JQqPYa8mGiVdpESqZVaW5ZrlnZZMabWKCUtFGJAbg9_t8F_tYBNVjk0UJa6Bt9iJhiX465DWYeODqgJHjFAkW2Dq3T4yRjN9g6zvcPs5LAr3Bx_t3kF9oT_GRO_WFpt5g</recordid><startdate>20241106</startdate><enddate>20241106</enddate><creator>Rong, Yang</creator><creator>Yu, De</creator><creator>Zhang, Xin</creator><creator>Wang, Tao</creator><creator>Wang, Jie</creator><creator>Li, Yuheng</creator><creator>Zhao, Tongpeng</creator><creator>He, Ruiqin</creator><creator>Gao, Yuxin</creator><creator>Huang, Can</creator><creator>Xiao, Shumin</creator><creator>Qin, Jingkai</creator><creator>Bai, Sai</creator><creator>Zhu, Huihui</creator><creator>Liu, Ao</creator><creator>Chen, Yimu</creator><creator>Song, Qinghai</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5118-8048</orcidid></search><sort><creationdate>20241106</creationdate><title>Perovskite Thin-Film Transistors for Ultra-Low-Voltage Neuromorphic Visions</title><author>Rong, Yang ; Yu, De ; Zhang, Xin ; Wang, Tao ; Wang, Jie ; Li, Yuheng ; Zhao, Tongpeng ; He, Ruiqin ; Gao, Yuxin ; Huang, Can ; Xiao, Shumin ; Qin, Jingkai ; Bai, Sai ; Zhu, Huihui ; Liu, Ao ; Chen, Yimu ; Song, Qinghai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c220t-13eccc45e72a833f5b8bed908a6ebf7a895e7839d4aad1ba19908f60dc884def3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rong, Yang</creatorcontrib><creatorcontrib>Yu, De</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Wang, Jie</creatorcontrib><creatorcontrib>Li, Yuheng</creatorcontrib><creatorcontrib>Zhao, Tongpeng</creatorcontrib><creatorcontrib>He, Ruiqin</creatorcontrib><creatorcontrib>Gao, Yuxin</creatorcontrib><creatorcontrib>Huang, Can</creatorcontrib><creatorcontrib>Xiao, Shumin</creatorcontrib><creatorcontrib>Qin, Jingkai</creatorcontrib><creatorcontrib>Bai, Sai</creatorcontrib><creatorcontrib>Zhu, Huihui</creatorcontrib><creatorcontrib>Liu, Ao</creatorcontrib><creatorcontrib>Chen, Yimu</creatorcontrib><creatorcontrib>Song, Qinghai</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rong, Yang</au><au>Yu, De</au><au>Zhang, Xin</au><au>Wang, Tao</au><au>Wang, Jie</au><au>Li, Yuheng</au><au>Zhao, Tongpeng</au><au>He, Ruiqin</au><au>Gao, Yuxin</au><au>Huang, Can</au><au>Xiao, Shumin</au><au>Qin, Jingkai</au><au>Bai, Sai</au><au>Zhu, Huihui</au><au>Liu, Ao</au><au>Chen, Yimu</au><au>Song, Qinghai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Perovskite Thin-Film Transistors for Ultra-Low-Voltage Neuromorphic Visions</atitle><jtitle>Advanced science</jtitle><addtitle>Adv Sci (Weinh)</addtitle><date>2024-11-06</date><risdate>2024</risdate><spage>e2410015</spage><pages>e2410015-</pages><issn>2198-3844</issn><eissn>2198-3844</eissn><abstract>Perovskite thin-film transistors (TFTs) simultaneously possessing exceptional carrier transport capabilities, nonvolatile memory effects, and photosensitivity have recently attracted attention in fields of both complementary circuits and neuromorphic computing. Despite continuous performance improvements through additive and composition engineering of the channel materials, the equally crucial dielectric/channel interfaces of perovskite TFTs have remained underexplored. Here, it is demonstrated that engineering the dielectric/channel interface in 2D tin perovskite TFTs not only enhances the performance and operational stability for their utilization in complementary circuits but also enables efficient synaptic behaviors (optical information sensing and storage) under an extremely low operating voltage of -1 mV at the same time. The interface-engineered TFT arrays operating at -1 mV are then demonstrated as the preprocessing hardware for neuromorphic visions with pattern recognition accuracy of 92.2% and long-term memory capability. Such a low operating voltage provides operational feasibility to the design of large-scale-integrated and wearable/implantable neuromorphic hardware.</abstract><cop>Germany</cop><pmid>39501928</pmid><doi>10.1002/advs.202410015</doi><orcidid>https://orcid.org/0000-0001-5118-8048</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2198-3844
ispartof Advanced science, 2024-11, p.e2410015
issn 2198-3844
2198-3844
language eng
recordid cdi_proquest_miscellaneous_3124690801
source PubMed (Medline); Wiley Online Library; Wiley Online Library (Open Access Collection); Directory of Open Access Journals; EZB Electronic Journals Library
title Perovskite Thin-Film Transistors for Ultra-Low-Voltage Neuromorphic Visions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T20%3A48%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Perovskite%20Thin-Film%20Transistors%20for%20Ultra-Low-Voltage%20Neuromorphic%20Visions&rft.jtitle=Advanced%20science&rft.au=Rong,%20Yang&rft.date=2024-11-06&rft.spage=e2410015&rft.pages=e2410015-&rft.issn=2198-3844&rft.eissn=2198-3844&rft_id=info:doi/10.1002/advs.202410015&rft_dat=%3Cproquest_cross%3E3124690801%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3124690801&rft_id=info:pmid/39501928&rfr_iscdi=true