A Theoretical Framework to Quantify Ecosystem Pressure‐Volume Relationships

ABSTRACT ‘Water potential’ is the biophysically relevant measure of water status in vegetation relating to stomatal, canopy and hydraulic conductance, as well as mortality thresholds; yet, this cannot be directly related to measured and modelled fluxes of water at plot‐ to landscape‐scale without un...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Global change biology 2024-11, Vol.30 (11), p.e17567-n/a
Hauptverfasser: Binks, Oliver, Meir, Patrick, Konings, Alexandra G., Cernusak, Lucas, Christoffersen, Bradley O., Anderegg, William R. L., Wood, Jeffrey, Sack, Lawren, Martinez‐Vilalta, Jordi, Mencuccini, Maurizio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 11
container_start_page e17567
container_title Global change biology
container_volume 30
creator Binks, Oliver
Meir, Patrick
Konings, Alexandra G.
Cernusak, Lucas
Christoffersen, Bradley O.
Anderegg, William R. L.
Wood, Jeffrey
Sack, Lawren
Martinez‐Vilalta, Jordi
Mencuccini, Maurizio
description ABSTRACT ‘Water potential’ is the biophysically relevant measure of water status in vegetation relating to stomatal, canopy and hydraulic conductance, as well as mortality thresholds; yet, this cannot be directly related to measured and modelled fluxes of water at plot‐ to landscape‐scale without understanding its relationship with ‘water content’. The capacity for detecting vegetation water content via microwave remote sensing further increases the need to understand the link between water content and ecosystem function. In this review, we explore how the fundamental measures of water status, water potential and water content are linked at ecosystem‐scale drawing on the existing theory of pressure‐volume (PV) relationships. We define and evaluate the concept and limitations of applying PV relationships to ecosystems where the quantity of water can vary on short timescales with respect to plant water status, and over longer timescales and over larger areas due to structural changes in vegetation. As a proof of concept, plot‐scale aboveground vegetation PV curves were generated from equilibrium (e.g., predawn) water potentials and water content of the above ground biomass of nine plots, including tropical rainforest, savanna, temperate forest, and a long‐term Amazonian rainforest drought experiment. Initial findings suggest that the stored water and ecosystem capacitance scale linearly with biomass across diverse systems, while the relative values of ecosystem hydraulic capacitance and physiologically accessible water storage do not vary systematically with biomass. The bottom‐up scaling approach to ecosystem water relations identified the need to characterise the distribution of water potentials within a community and also revealed the relevance of community‐level plant tissue fractions to ecosystem water relations. We believe that this theory will be instrumental in linking our detailed understanding of biophysical processes at tissue‐scale to the scale at which land surface models operate and at which tower‐based, airborne and satellite remote sensing can provide information. The amount of water contained in, and available to, vegetation strongly constrains the functioning and total biomass of ecosystems. As such, there is a lot of interest in measuring, monitoring and modelling the water contained in forest ecosystems. In this article, we present a way to link the physical quantity of water in vegetation at large scales and to the physiological function
doi_str_mv 10.1111/gcb.17567
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3124690790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3133599599</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3117-2c1c8179d2e472b50a0f76dce3aaa07c08f74ee82312c4e9f8b3e945c1594a2d3</originalsourceid><addsrcrecordid>eNqN0ctKxDAUBuAgiveFLyAFN7roeHJrmqUO4wUUL6jbksmcarWdjEmLzM5H8Bl9EjOOuhAEQyBZfPxwzk_IFoUejWf_3g57VMlMLZBVyjOZMpFni7O_FCkFylfIWgiPAMAZZMtkhWsJVGSwSs4PkpsHdB7bypo6OfKmwRfnn5LWJVedGbdVOU0G1oVpaLFJLj2G0Hl8f327c3XXYHKNtWkrNw4P1SRskKXS1AE3v951cns0uOmfpGcXx6f9g7PUckpVyiy1OVV6xFAoNpRgoFTZyCI3xoCykJdKIOaMU2YF6jIfctRCWiq1MGzE18nuPHfi3XOHoS2aKlisazNG14WCUymYZADiH5SJTIPSEOnOL_roOj-Og0TFudQ63qj25sp6F4LHspj4qjF-WlAoZnUUsY7is45ot78Su2GDox_5vf8I9ufgpapx-ndScdw_nEd-AIc6k38</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133599599</pqid></control><display><type>article</type><title>A Theoretical Framework to Quantify Ecosystem Pressure‐Volume Relationships</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Binks, Oliver ; Meir, Patrick ; Konings, Alexandra G. ; Cernusak, Lucas ; Christoffersen, Bradley O. ; Anderegg, William R. L. ; Wood, Jeffrey ; Sack, Lawren ; Martinez‐Vilalta, Jordi ; Mencuccini, Maurizio</creator><creatorcontrib>Binks, Oliver ; Meir, Patrick ; Konings, Alexandra G. ; Cernusak, Lucas ; Christoffersen, Bradley O. ; Anderegg, William R. L. ; Wood, Jeffrey ; Sack, Lawren ; Martinez‐Vilalta, Jordi ; Mencuccini, Maurizio</creatorcontrib><description>ABSTRACT ‘Water potential’ is the biophysically relevant measure of water status in vegetation relating to stomatal, canopy and hydraulic conductance, as well as mortality thresholds; yet, this cannot be directly related to measured and modelled fluxes of water at plot‐ to landscape‐scale without understanding its relationship with ‘water content’. The capacity for detecting vegetation water content via microwave remote sensing further increases the need to understand the link between water content and ecosystem function. In this review, we explore how the fundamental measures of water status, water potential and water content are linked at ecosystem‐scale drawing on the existing theory of pressure‐volume (PV) relationships. We define and evaluate the concept and limitations of applying PV relationships to ecosystems where the quantity of water can vary on short timescales with respect to plant water status, and over longer timescales and over larger areas due to structural changes in vegetation. As a proof of concept, plot‐scale aboveground vegetation PV curves were generated from equilibrium (e.g., predawn) water potentials and water content of the above ground biomass of nine plots, including tropical rainforest, savanna, temperate forest, and a long‐term Amazonian rainforest drought experiment. Initial findings suggest that the stored water and ecosystem capacitance scale linearly with biomass across diverse systems, while the relative values of ecosystem hydraulic capacitance and physiologically accessible water storage do not vary systematically with biomass. The bottom‐up scaling approach to ecosystem water relations identified the need to characterise the distribution of water potentials within a community and also revealed the relevance of community‐level plant tissue fractions to ecosystem water relations. We believe that this theory will be instrumental in linking our detailed understanding of biophysical processes at tissue‐scale to the scale at which land surface models operate and at which tower‐based, airborne and satellite remote sensing can provide information. The amount of water contained in, and available to, vegetation strongly constrains the functioning and total biomass of ecosystems. As such, there is a lot of interest in measuring, monitoring and modelling the water contained in forest ecosystems. In this article, we present a way to link the physical quantity of water in vegetation at large scales and to the physiological functioning of forest ecosystems.</description><identifier>ISSN: 1354-1013</identifier><identifier>ISSN: 1365-2486</identifier><identifier>EISSN: 1365-2486</identifier><identifier>DOI: 10.1111/gcb.17567</identifier><identifier>PMID: 39501460</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>aboveground biomass ; Airborne sensing ; Biomass ; canopy ; Capacitance ; Drought ; ecohydrological equilibrium theory ; Ecological function ; Ecosystem ; ecosystem function ; ecosystem water potential ; Ecosystems ; forest water content ; global change ; hydraulic conductivity ; Models, Theoretical ; Moisture content ; moisture release curves ; mortality ; Plant tissues ; Plants (botany) ; Rainforests ; Remote sensing ; satellites ; savannas ; Scaling ; Stomata ; Temperate forests ; tree hydraulics ; tropical rain forests ; Vegetation ; Water ; Water - analysis ; Water content ; Water potential ; Water relations ; Water storage</subject><ispartof>Global change biology, 2024-11, Vol.30 (11), p.e17567-n/a</ispartof><rights>2024 John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2024 John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3117-2c1c8179d2e472b50a0f76dce3aaa07c08f74ee82312c4e9f8b3e945c1594a2d3</cites><orcidid>0000-0001-6422-2882 ; 0000-0002-6291-3644 ; 0000-0002-2810-1722 ; 0000-0001-6551-3331 ; 0000-0002-7575-5526</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fgcb.17567$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fgcb.17567$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39501460$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Binks, Oliver</creatorcontrib><creatorcontrib>Meir, Patrick</creatorcontrib><creatorcontrib>Konings, Alexandra G.</creatorcontrib><creatorcontrib>Cernusak, Lucas</creatorcontrib><creatorcontrib>Christoffersen, Bradley O.</creatorcontrib><creatorcontrib>Anderegg, William R. L.</creatorcontrib><creatorcontrib>Wood, Jeffrey</creatorcontrib><creatorcontrib>Sack, Lawren</creatorcontrib><creatorcontrib>Martinez‐Vilalta, Jordi</creatorcontrib><creatorcontrib>Mencuccini, Maurizio</creatorcontrib><title>A Theoretical Framework to Quantify Ecosystem Pressure‐Volume Relationships</title><title>Global change biology</title><addtitle>Glob Chang Biol</addtitle><description>ABSTRACT ‘Water potential’ is the biophysically relevant measure of water status in vegetation relating to stomatal, canopy and hydraulic conductance, as well as mortality thresholds; yet, this cannot be directly related to measured and modelled fluxes of water at plot‐ to landscape‐scale without understanding its relationship with ‘water content’. The capacity for detecting vegetation water content via microwave remote sensing further increases the need to understand the link between water content and ecosystem function. In this review, we explore how the fundamental measures of water status, water potential and water content are linked at ecosystem‐scale drawing on the existing theory of pressure‐volume (PV) relationships. We define and evaluate the concept and limitations of applying PV relationships to ecosystems where the quantity of water can vary on short timescales with respect to plant water status, and over longer timescales and over larger areas due to structural changes in vegetation. As a proof of concept, plot‐scale aboveground vegetation PV curves were generated from equilibrium (e.g., predawn) water potentials and water content of the above ground biomass of nine plots, including tropical rainforest, savanna, temperate forest, and a long‐term Amazonian rainforest drought experiment. Initial findings suggest that the stored water and ecosystem capacitance scale linearly with biomass across diverse systems, while the relative values of ecosystem hydraulic capacitance and physiologically accessible water storage do not vary systematically with biomass. The bottom‐up scaling approach to ecosystem water relations identified the need to characterise the distribution of water potentials within a community and also revealed the relevance of community‐level plant tissue fractions to ecosystem water relations. We believe that this theory will be instrumental in linking our detailed understanding of biophysical processes at tissue‐scale to the scale at which land surface models operate and at which tower‐based, airborne and satellite remote sensing can provide information. The amount of water contained in, and available to, vegetation strongly constrains the functioning and total biomass of ecosystems. As such, there is a lot of interest in measuring, monitoring and modelling the water contained in forest ecosystems. In this article, we present a way to link the physical quantity of water in vegetation at large scales and to the physiological functioning of forest ecosystems.</description><subject>aboveground biomass</subject><subject>Airborne sensing</subject><subject>Biomass</subject><subject>canopy</subject><subject>Capacitance</subject><subject>Drought</subject><subject>ecohydrological equilibrium theory</subject><subject>Ecological function</subject><subject>Ecosystem</subject><subject>ecosystem function</subject><subject>ecosystem water potential</subject><subject>Ecosystems</subject><subject>forest water content</subject><subject>global change</subject><subject>hydraulic conductivity</subject><subject>Models, Theoretical</subject><subject>Moisture content</subject><subject>moisture release curves</subject><subject>mortality</subject><subject>Plant tissues</subject><subject>Plants (botany)</subject><subject>Rainforests</subject><subject>Remote sensing</subject><subject>satellites</subject><subject>savannas</subject><subject>Scaling</subject><subject>Stomata</subject><subject>Temperate forests</subject><subject>tree hydraulics</subject><subject>tropical rain forests</subject><subject>Vegetation</subject><subject>Water</subject><subject>Water - analysis</subject><subject>Water content</subject><subject>Water potential</subject><subject>Water relations</subject><subject>Water storage</subject><issn>1354-1013</issn><issn>1365-2486</issn><issn>1365-2486</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0ctKxDAUBuAgiveFLyAFN7roeHJrmqUO4wUUL6jbksmcarWdjEmLzM5H8Bl9EjOOuhAEQyBZfPxwzk_IFoUejWf_3g57VMlMLZBVyjOZMpFni7O_FCkFylfIWgiPAMAZZMtkhWsJVGSwSs4PkpsHdB7bypo6OfKmwRfnn5LWJVedGbdVOU0G1oVpaLFJLj2G0Hl8f327c3XXYHKNtWkrNw4P1SRskKXS1AE3v951cns0uOmfpGcXx6f9g7PUckpVyiy1OVV6xFAoNpRgoFTZyCI3xoCykJdKIOaMU2YF6jIfctRCWiq1MGzE18nuPHfi3XOHoS2aKlisazNG14WCUymYZADiH5SJTIPSEOnOL_roOj-Og0TFudQ63qj25sp6F4LHspj4qjF-WlAoZnUUsY7is45ot78Su2GDox_5vf8I9ufgpapx-ndScdw_nEd-AIc6k38</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Binks, Oliver</creator><creator>Meir, Patrick</creator><creator>Konings, Alexandra G.</creator><creator>Cernusak, Lucas</creator><creator>Christoffersen, Bradley O.</creator><creator>Anderegg, William R. L.</creator><creator>Wood, Jeffrey</creator><creator>Sack, Lawren</creator><creator>Martinez‐Vilalta, Jordi</creator><creator>Mencuccini, Maurizio</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-6422-2882</orcidid><orcidid>https://orcid.org/0000-0002-6291-3644</orcidid><orcidid>https://orcid.org/0000-0002-2810-1722</orcidid><orcidid>https://orcid.org/0000-0001-6551-3331</orcidid><orcidid>https://orcid.org/0000-0002-7575-5526</orcidid></search><sort><creationdate>202411</creationdate><title>A Theoretical Framework to Quantify Ecosystem Pressure‐Volume Relationships</title><author>Binks, Oliver ; Meir, Patrick ; Konings, Alexandra G. ; Cernusak, Lucas ; Christoffersen, Bradley O. ; Anderegg, William R. L. ; Wood, Jeffrey ; Sack, Lawren ; Martinez‐Vilalta, Jordi ; Mencuccini, Maurizio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3117-2c1c8179d2e472b50a0f76dce3aaa07c08f74ee82312c4e9f8b3e945c1594a2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>aboveground biomass</topic><topic>Airborne sensing</topic><topic>Biomass</topic><topic>canopy</topic><topic>Capacitance</topic><topic>Drought</topic><topic>ecohydrological equilibrium theory</topic><topic>Ecological function</topic><topic>Ecosystem</topic><topic>ecosystem function</topic><topic>ecosystem water potential</topic><topic>Ecosystems</topic><topic>forest water content</topic><topic>global change</topic><topic>hydraulic conductivity</topic><topic>Models, Theoretical</topic><topic>Moisture content</topic><topic>moisture release curves</topic><topic>mortality</topic><topic>Plant tissues</topic><topic>Plants (botany)</topic><topic>Rainforests</topic><topic>Remote sensing</topic><topic>satellites</topic><topic>savannas</topic><topic>Scaling</topic><topic>Stomata</topic><topic>Temperate forests</topic><topic>tree hydraulics</topic><topic>tropical rain forests</topic><topic>Vegetation</topic><topic>Water</topic><topic>Water - analysis</topic><topic>Water content</topic><topic>Water potential</topic><topic>Water relations</topic><topic>Water storage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Binks, Oliver</creatorcontrib><creatorcontrib>Meir, Patrick</creatorcontrib><creatorcontrib>Konings, Alexandra G.</creatorcontrib><creatorcontrib>Cernusak, Lucas</creatorcontrib><creatorcontrib>Christoffersen, Bradley O.</creatorcontrib><creatorcontrib>Anderegg, William R. L.</creatorcontrib><creatorcontrib>Wood, Jeffrey</creatorcontrib><creatorcontrib>Sack, Lawren</creatorcontrib><creatorcontrib>Martinez‐Vilalta, Jordi</creatorcontrib><creatorcontrib>Mencuccini, Maurizio</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Global change biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Binks, Oliver</au><au>Meir, Patrick</au><au>Konings, Alexandra G.</au><au>Cernusak, Lucas</au><au>Christoffersen, Bradley O.</au><au>Anderegg, William R. L.</au><au>Wood, Jeffrey</au><au>Sack, Lawren</au><au>Martinez‐Vilalta, Jordi</au><au>Mencuccini, Maurizio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Theoretical Framework to Quantify Ecosystem Pressure‐Volume Relationships</atitle><jtitle>Global change biology</jtitle><addtitle>Glob Chang Biol</addtitle><date>2024-11</date><risdate>2024</risdate><volume>30</volume><issue>11</issue><spage>e17567</spage><epage>n/a</epage><pages>e17567-n/a</pages><issn>1354-1013</issn><issn>1365-2486</issn><eissn>1365-2486</eissn><abstract>ABSTRACT ‘Water potential’ is the biophysically relevant measure of water status in vegetation relating to stomatal, canopy and hydraulic conductance, as well as mortality thresholds; yet, this cannot be directly related to measured and modelled fluxes of water at plot‐ to landscape‐scale without understanding its relationship with ‘water content’. The capacity for detecting vegetation water content via microwave remote sensing further increases the need to understand the link between water content and ecosystem function. In this review, we explore how the fundamental measures of water status, water potential and water content are linked at ecosystem‐scale drawing on the existing theory of pressure‐volume (PV) relationships. We define and evaluate the concept and limitations of applying PV relationships to ecosystems where the quantity of water can vary on short timescales with respect to plant water status, and over longer timescales and over larger areas due to structural changes in vegetation. As a proof of concept, plot‐scale aboveground vegetation PV curves were generated from equilibrium (e.g., predawn) water potentials and water content of the above ground biomass of nine plots, including tropical rainforest, savanna, temperate forest, and a long‐term Amazonian rainforest drought experiment. Initial findings suggest that the stored water and ecosystem capacitance scale linearly with biomass across diverse systems, while the relative values of ecosystem hydraulic capacitance and physiologically accessible water storage do not vary systematically with biomass. The bottom‐up scaling approach to ecosystem water relations identified the need to characterise the distribution of water potentials within a community and also revealed the relevance of community‐level plant tissue fractions to ecosystem water relations. We believe that this theory will be instrumental in linking our detailed understanding of biophysical processes at tissue‐scale to the scale at which land surface models operate and at which tower‐based, airborne and satellite remote sensing can provide information. The amount of water contained in, and available to, vegetation strongly constrains the functioning and total biomass of ecosystems. As such, there is a lot of interest in measuring, monitoring and modelling the water contained in forest ecosystems. In this article, we present a way to link the physical quantity of water in vegetation at large scales and to the physiological functioning of forest ecosystems.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>39501460</pmid><doi>10.1111/gcb.17567</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-6422-2882</orcidid><orcidid>https://orcid.org/0000-0002-6291-3644</orcidid><orcidid>https://orcid.org/0000-0002-2810-1722</orcidid><orcidid>https://orcid.org/0000-0001-6551-3331</orcidid><orcidid>https://orcid.org/0000-0002-7575-5526</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1354-1013
ispartof Global change biology, 2024-11, Vol.30 (11), p.e17567-n/a
issn 1354-1013
1365-2486
1365-2486
language eng
recordid cdi_proquest_miscellaneous_3124690790
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects aboveground biomass
Airborne sensing
Biomass
canopy
Capacitance
Drought
ecohydrological equilibrium theory
Ecological function
Ecosystem
ecosystem function
ecosystem water potential
Ecosystems
forest water content
global change
hydraulic conductivity
Models, Theoretical
Moisture content
moisture release curves
mortality
Plant tissues
Plants (botany)
Rainforests
Remote sensing
satellites
savannas
Scaling
Stomata
Temperate forests
tree hydraulics
tropical rain forests
Vegetation
Water
Water - analysis
Water content
Water potential
Water relations
Water storage
title A Theoretical Framework to Quantify Ecosystem Pressure‐Volume Relationships
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T21%3A36%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Theoretical%20Framework%20to%20Quantify%20Ecosystem%20Pressure%E2%80%90Volume%20Relationships&rft.jtitle=Global%20change%20biology&rft.au=Binks,%20Oliver&rft.date=2024-11&rft.volume=30&rft.issue=11&rft.spage=e17567&rft.epage=n/a&rft.pages=e17567-n/a&rft.issn=1354-1013&rft.eissn=1365-2486&rft_id=info:doi/10.1111/gcb.17567&rft_dat=%3Cproquest_cross%3E3133599599%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133599599&rft_id=info:pmid/39501460&rfr_iscdi=true