A Theoretical Framework to Quantify Ecosystem Pressure‐Volume Relationships
ABSTRACT ‘Water potential’ is the biophysically relevant measure of water status in vegetation relating to stomatal, canopy and hydraulic conductance, as well as mortality thresholds; yet, this cannot be directly related to measured and modelled fluxes of water at plot‐ to landscape‐scale without un...
Gespeichert in:
Veröffentlicht in: | Global change biology 2024-11, Vol.30 (11), p.e17567-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 11 |
container_start_page | e17567 |
container_title | Global change biology |
container_volume | 30 |
creator | Binks, Oliver Meir, Patrick Konings, Alexandra G. Cernusak, Lucas Christoffersen, Bradley O. Anderegg, William R. L. Wood, Jeffrey Sack, Lawren Martinez‐Vilalta, Jordi Mencuccini, Maurizio |
description | ABSTRACT
‘Water potential’ is the biophysically relevant measure of water status in vegetation relating to stomatal, canopy and hydraulic conductance, as well as mortality thresholds; yet, this cannot be directly related to measured and modelled fluxes of water at plot‐ to landscape‐scale without understanding its relationship with ‘water content’. The capacity for detecting vegetation water content via microwave remote sensing further increases the need to understand the link between water content and ecosystem function. In this review, we explore how the fundamental measures of water status, water potential and water content are linked at ecosystem‐scale drawing on the existing theory of pressure‐volume (PV) relationships. We define and evaluate the concept and limitations of applying PV relationships to ecosystems where the quantity of water can vary on short timescales with respect to plant water status, and over longer timescales and over larger areas due to structural changes in vegetation. As a proof of concept, plot‐scale aboveground vegetation PV curves were generated from equilibrium (e.g., predawn) water potentials and water content of the above ground biomass of nine plots, including tropical rainforest, savanna, temperate forest, and a long‐term Amazonian rainforest drought experiment. Initial findings suggest that the stored water and ecosystem capacitance scale linearly with biomass across diverse systems, while the relative values of ecosystem hydraulic capacitance and physiologically accessible water storage do not vary systematically with biomass. The bottom‐up scaling approach to ecosystem water relations identified the need to characterise the distribution of water potentials within a community and also revealed the relevance of community‐level plant tissue fractions to ecosystem water relations. We believe that this theory will be instrumental in linking our detailed understanding of biophysical processes at tissue‐scale to the scale at which land surface models operate and at which tower‐based, airborne and satellite remote sensing can provide information.
The amount of water contained in, and available to, vegetation strongly constrains the functioning and total biomass of ecosystems. As such, there is a lot of interest in measuring, monitoring and modelling the water contained in forest ecosystems. In this article, we present a way to link the physical quantity of water in vegetation at large scales and to the physiological function |
doi_str_mv | 10.1111/gcb.17567 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3124690790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3133599599</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3117-2c1c8179d2e472b50a0f76dce3aaa07c08f74ee82312c4e9f8b3e945c1594a2d3</originalsourceid><addsrcrecordid>eNqN0ctKxDAUBuAgiveFLyAFN7roeHJrmqUO4wUUL6jbksmcarWdjEmLzM5H8Bl9EjOOuhAEQyBZfPxwzk_IFoUejWf_3g57VMlMLZBVyjOZMpFni7O_FCkFylfIWgiPAMAZZMtkhWsJVGSwSs4PkpsHdB7bypo6OfKmwRfnn5LWJVedGbdVOU0G1oVpaLFJLj2G0Hl8f327c3XXYHKNtWkrNw4P1SRskKXS1AE3v951cns0uOmfpGcXx6f9g7PUckpVyiy1OVV6xFAoNpRgoFTZyCI3xoCykJdKIOaMU2YF6jIfctRCWiq1MGzE18nuPHfi3XOHoS2aKlisazNG14WCUymYZADiH5SJTIPSEOnOL_roOj-Og0TFudQ63qj25sp6F4LHspj4qjF-WlAoZnUUsY7is45ot78Su2GDox_5vf8I9ufgpapx-ndScdw_nEd-AIc6k38</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133599599</pqid></control><display><type>article</type><title>A Theoretical Framework to Quantify Ecosystem Pressure‐Volume Relationships</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Binks, Oliver ; Meir, Patrick ; Konings, Alexandra G. ; Cernusak, Lucas ; Christoffersen, Bradley O. ; Anderegg, William R. L. ; Wood, Jeffrey ; Sack, Lawren ; Martinez‐Vilalta, Jordi ; Mencuccini, Maurizio</creator><creatorcontrib>Binks, Oliver ; Meir, Patrick ; Konings, Alexandra G. ; Cernusak, Lucas ; Christoffersen, Bradley O. ; Anderegg, William R. L. ; Wood, Jeffrey ; Sack, Lawren ; Martinez‐Vilalta, Jordi ; Mencuccini, Maurizio</creatorcontrib><description>ABSTRACT
‘Water potential’ is the biophysically relevant measure of water status in vegetation relating to stomatal, canopy and hydraulic conductance, as well as mortality thresholds; yet, this cannot be directly related to measured and modelled fluxes of water at plot‐ to landscape‐scale without understanding its relationship with ‘water content’. The capacity for detecting vegetation water content via microwave remote sensing further increases the need to understand the link between water content and ecosystem function. In this review, we explore how the fundamental measures of water status, water potential and water content are linked at ecosystem‐scale drawing on the existing theory of pressure‐volume (PV) relationships. We define and evaluate the concept and limitations of applying PV relationships to ecosystems where the quantity of water can vary on short timescales with respect to plant water status, and over longer timescales and over larger areas due to structural changes in vegetation. As a proof of concept, plot‐scale aboveground vegetation PV curves were generated from equilibrium (e.g., predawn) water potentials and water content of the above ground biomass of nine plots, including tropical rainforest, savanna, temperate forest, and a long‐term Amazonian rainforest drought experiment. Initial findings suggest that the stored water and ecosystem capacitance scale linearly with biomass across diverse systems, while the relative values of ecosystem hydraulic capacitance and physiologically accessible water storage do not vary systematically with biomass. The bottom‐up scaling approach to ecosystem water relations identified the need to characterise the distribution of water potentials within a community and also revealed the relevance of community‐level plant tissue fractions to ecosystem water relations. We believe that this theory will be instrumental in linking our detailed understanding of biophysical processes at tissue‐scale to the scale at which land surface models operate and at which tower‐based, airborne and satellite remote sensing can provide information.
The amount of water contained in, and available to, vegetation strongly constrains the functioning and total biomass of ecosystems. As such, there is a lot of interest in measuring, monitoring and modelling the water contained in forest ecosystems. In this article, we present a way to link the physical quantity of water in vegetation at large scales and to the physiological functioning of forest ecosystems.</description><identifier>ISSN: 1354-1013</identifier><identifier>ISSN: 1365-2486</identifier><identifier>EISSN: 1365-2486</identifier><identifier>DOI: 10.1111/gcb.17567</identifier><identifier>PMID: 39501460</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>aboveground biomass ; Airborne sensing ; Biomass ; canopy ; Capacitance ; Drought ; ecohydrological equilibrium theory ; Ecological function ; Ecosystem ; ecosystem function ; ecosystem water potential ; Ecosystems ; forest water content ; global change ; hydraulic conductivity ; Models, Theoretical ; Moisture content ; moisture release curves ; mortality ; Plant tissues ; Plants (botany) ; Rainforests ; Remote sensing ; satellites ; savannas ; Scaling ; Stomata ; Temperate forests ; tree hydraulics ; tropical rain forests ; Vegetation ; Water ; Water - analysis ; Water content ; Water potential ; Water relations ; Water storage</subject><ispartof>Global change biology, 2024-11, Vol.30 (11), p.e17567-n/a</ispartof><rights>2024 John Wiley & Sons Ltd.</rights><rights>Copyright © 2024 John Wiley & Sons Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3117-2c1c8179d2e472b50a0f76dce3aaa07c08f74ee82312c4e9f8b3e945c1594a2d3</cites><orcidid>0000-0001-6422-2882 ; 0000-0002-6291-3644 ; 0000-0002-2810-1722 ; 0000-0001-6551-3331 ; 0000-0002-7575-5526</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fgcb.17567$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fgcb.17567$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39501460$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Binks, Oliver</creatorcontrib><creatorcontrib>Meir, Patrick</creatorcontrib><creatorcontrib>Konings, Alexandra G.</creatorcontrib><creatorcontrib>Cernusak, Lucas</creatorcontrib><creatorcontrib>Christoffersen, Bradley O.</creatorcontrib><creatorcontrib>Anderegg, William R. L.</creatorcontrib><creatorcontrib>Wood, Jeffrey</creatorcontrib><creatorcontrib>Sack, Lawren</creatorcontrib><creatorcontrib>Martinez‐Vilalta, Jordi</creatorcontrib><creatorcontrib>Mencuccini, Maurizio</creatorcontrib><title>A Theoretical Framework to Quantify Ecosystem Pressure‐Volume Relationships</title><title>Global change biology</title><addtitle>Glob Chang Biol</addtitle><description>ABSTRACT
‘Water potential’ is the biophysically relevant measure of water status in vegetation relating to stomatal, canopy and hydraulic conductance, as well as mortality thresholds; yet, this cannot be directly related to measured and modelled fluxes of water at plot‐ to landscape‐scale without understanding its relationship with ‘water content’. The capacity for detecting vegetation water content via microwave remote sensing further increases the need to understand the link between water content and ecosystem function. In this review, we explore how the fundamental measures of water status, water potential and water content are linked at ecosystem‐scale drawing on the existing theory of pressure‐volume (PV) relationships. We define and evaluate the concept and limitations of applying PV relationships to ecosystems where the quantity of water can vary on short timescales with respect to plant water status, and over longer timescales and over larger areas due to structural changes in vegetation. As a proof of concept, plot‐scale aboveground vegetation PV curves were generated from equilibrium (e.g., predawn) water potentials and water content of the above ground biomass of nine plots, including tropical rainforest, savanna, temperate forest, and a long‐term Amazonian rainforest drought experiment. Initial findings suggest that the stored water and ecosystem capacitance scale linearly with biomass across diverse systems, while the relative values of ecosystem hydraulic capacitance and physiologically accessible water storage do not vary systematically with biomass. The bottom‐up scaling approach to ecosystem water relations identified the need to characterise the distribution of water potentials within a community and also revealed the relevance of community‐level plant tissue fractions to ecosystem water relations. We believe that this theory will be instrumental in linking our detailed understanding of biophysical processes at tissue‐scale to the scale at which land surface models operate and at which tower‐based, airborne and satellite remote sensing can provide information.
The amount of water contained in, and available to, vegetation strongly constrains the functioning and total biomass of ecosystems. As such, there is a lot of interest in measuring, monitoring and modelling the water contained in forest ecosystems. In this article, we present a way to link the physical quantity of water in vegetation at large scales and to the physiological functioning of forest ecosystems.</description><subject>aboveground biomass</subject><subject>Airborne sensing</subject><subject>Biomass</subject><subject>canopy</subject><subject>Capacitance</subject><subject>Drought</subject><subject>ecohydrological equilibrium theory</subject><subject>Ecological function</subject><subject>Ecosystem</subject><subject>ecosystem function</subject><subject>ecosystem water potential</subject><subject>Ecosystems</subject><subject>forest water content</subject><subject>global change</subject><subject>hydraulic conductivity</subject><subject>Models, Theoretical</subject><subject>Moisture content</subject><subject>moisture release curves</subject><subject>mortality</subject><subject>Plant tissues</subject><subject>Plants (botany)</subject><subject>Rainforests</subject><subject>Remote sensing</subject><subject>satellites</subject><subject>savannas</subject><subject>Scaling</subject><subject>Stomata</subject><subject>Temperate forests</subject><subject>tree hydraulics</subject><subject>tropical rain forests</subject><subject>Vegetation</subject><subject>Water</subject><subject>Water - analysis</subject><subject>Water content</subject><subject>Water potential</subject><subject>Water relations</subject><subject>Water storage</subject><issn>1354-1013</issn><issn>1365-2486</issn><issn>1365-2486</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0ctKxDAUBuAgiveFLyAFN7roeHJrmqUO4wUUL6jbksmcarWdjEmLzM5H8Bl9EjOOuhAEQyBZfPxwzk_IFoUejWf_3g57VMlMLZBVyjOZMpFni7O_FCkFylfIWgiPAMAZZMtkhWsJVGSwSs4PkpsHdB7bypo6OfKmwRfnn5LWJVedGbdVOU0G1oVpaLFJLj2G0Hl8f327c3XXYHKNtWkrNw4P1SRskKXS1AE3v951cns0uOmfpGcXx6f9g7PUckpVyiy1OVV6xFAoNpRgoFTZyCI3xoCykJdKIOaMU2YF6jIfctRCWiq1MGzE18nuPHfi3XOHoS2aKlisazNG14WCUymYZADiH5SJTIPSEOnOL_roOj-Og0TFudQ63qj25sp6F4LHspj4qjF-WlAoZnUUsY7is45ot78Su2GDox_5vf8I9ufgpapx-ndScdw_nEd-AIc6k38</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Binks, Oliver</creator><creator>Meir, Patrick</creator><creator>Konings, Alexandra G.</creator><creator>Cernusak, Lucas</creator><creator>Christoffersen, Bradley O.</creator><creator>Anderegg, William R. L.</creator><creator>Wood, Jeffrey</creator><creator>Sack, Lawren</creator><creator>Martinez‐Vilalta, Jordi</creator><creator>Mencuccini, Maurizio</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-6422-2882</orcidid><orcidid>https://orcid.org/0000-0002-6291-3644</orcidid><orcidid>https://orcid.org/0000-0002-2810-1722</orcidid><orcidid>https://orcid.org/0000-0001-6551-3331</orcidid><orcidid>https://orcid.org/0000-0002-7575-5526</orcidid></search><sort><creationdate>202411</creationdate><title>A Theoretical Framework to Quantify Ecosystem Pressure‐Volume Relationships</title><author>Binks, Oliver ; Meir, Patrick ; Konings, Alexandra G. ; Cernusak, Lucas ; Christoffersen, Bradley O. ; Anderegg, William R. L. ; Wood, Jeffrey ; Sack, Lawren ; Martinez‐Vilalta, Jordi ; Mencuccini, Maurizio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3117-2c1c8179d2e472b50a0f76dce3aaa07c08f74ee82312c4e9f8b3e945c1594a2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>aboveground biomass</topic><topic>Airborne sensing</topic><topic>Biomass</topic><topic>canopy</topic><topic>Capacitance</topic><topic>Drought</topic><topic>ecohydrological equilibrium theory</topic><topic>Ecological function</topic><topic>Ecosystem</topic><topic>ecosystem function</topic><topic>ecosystem water potential</topic><topic>Ecosystems</topic><topic>forest water content</topic><topic>global change</topic><topic>hydraulic conductivity</topic><topic>Models, Theoretical</topic><topic>Moisture content</topic><topic>moisture release curves</topic><topic>mortality</topic><topic>Plant tissues</topic><topic>Plants (botany)</topic><topic>Rainforests</topic><topic>Remote sensing</topic><topic>satellites</topic><topic>savannas</topic><topic>Scaling</topic><topic>Stomata</topic><topic>Temperate forests</topic><topic>tree hydraulics</topic><topic>tropical rain forests</topic><topic>Vegetation</topic><topic>Water</topic><topic>Water - analysis</topic><topic>Water content</topic><topic>Water potential</topic><topic>Water relations</topic><topic>Water storage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Binks, Oliver</creatorcontrib><creatorcontrib>Meir, Patrick</creatorcontrib><creatorcontrib>Konings, Alexandra G.</creatorcontrib><creatorcontrib>Cernusak, Lucas</creatorcontrib><creatorcontrib>Christoffersen, Bradley O.</creatorcontrib><creatorcontrib>Anderegg, William R. L.</creatorcontrib><creatorcontrib>Wood, Jeffrey</creatorcontrib><creatorcontrib>Sack, Lawren</creatorcontrib><creatorcontrib>Martinez‐Vilalta, Jordi</creatorcontrib><creatorcontrib>Mencuccini, Maurizio</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Global change biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Binks, Oliver</au><au>Meir, Patrick</au><au>Konings, Alexandra G.</au><au>Cernusak, Lucas</au><au>Christoffersen, Bradley O.</au><au>Anderegg, William R. L.</au><au>Wood, Jeffrey</au><au>Sack, Lawren</au><au>Martinez‐Vilalta, Jordi</au><au>Mencuccini, Maurizio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Theoretical Framework to Quantify Ecosystem Pressure‐Volume Relationships</atitle><jtitle>Global change biology</jtitle><addtitle>Glob Chang Biol</addtitle><date>2024-11</date><risdate>2024</risdate><volume>30</volume><issue>11</issue><spage>e17567</spage><epage>n/a</epage><pages>e17567-n/a</pages><issn>1354-1013</issn><issn>1365-2486</issn><eissn>1365-2486</eissn><abstract>ABSTRACT
‘Water potential’ is the biophysically relevant measure of water status in vegetation relating to stomatal, canopy and hydraulic conductance, as well as mortality thresholds; yet, this cannot be directly related to measured and modelled fluxes of water at plot‐ to landscape‐scale without understanding its relationship with ‘water content’. The capacity for detecting vegetation water content via microwave remote sensing further increases the need to understand the link between water content and ecosystem function. In this review, we explore how the fundamental measures of water status, water potential and water content are linked at ecosystem‐scale drawing on the existing theory of pressure‐volume (PV) relationships. We define and evaluate the concept and limitations of applying PV relationships to ecosystems where the quantity of water can vary on short timescales with respect to plant water status, and over longer timescales and over larger areas due to structural changes in vegetation. As a proof of concept, plot‐scale aboveground vegetation PV curves were generated from equilibrium (e.g., predawn) water potentials and water content of the above ground biomass of nine plots, including tropical rainforest, savanna, temperate forest, and a long‐term Amazonian rainforest drought experiment. Initial findings suggest that the stored water and ecosystem capacitance scale linearly with biomass across diverse systems, while the relative values of ecosystem hydraulic capacitance and physiologically accessible water storage do not vary systematically with biomass. The bottom‐up scaling approach to ecosystem water relations identified the need to characterise the distribution of water potentials within a community and also revealed the relevance of community‐level plant tissue fractions to ecosystem water relations. We believe that this theory will be instrumental in linking our detailed understanding of biophysical processes at tissue‐scale to the scale at which land surface models operate and at which tower‐based, airborne and satellite remote sensing can provide information.
The amount of water contained in, and available to, vegetation strongly constrains the functioning and total biomass of ecosystems. As such, there is a lot of interest in measuring, monitoring and modelling the water contained in forest ecosystems. In this article, we present a way to link the physical quantity of water in vegetation at large scales and to the physiological functioning of forest ecosystems.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>39501460</pmid><doi>10.1111/gcb.17567</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-6422-2882</orcidid><orcidid>https://orcid.org/0000-0002-6291-3644</orcidid><orcidid>https://orcid.org/0000-0002-2810-1722</orcidid><orcidid>https://orcid.org/0000-0001-6551-3331</orcidid><orcidid>https://orcid.org/0000-0002-7575-5526</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1354-1013 |
ispartof | Global change biology, 2024-11, Vol.30 (11), p.e17567-n/a |
issn | 1354-1013 1365-2486 1365-2486 |
language | eng |
recordid | cdi_proquest_miscellaneous_3124690790 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | aboveground biomass Airborne sensing Biomass canopy Capacitance Drought ecohydrological equilibrium theory Ecological function Ecosystem ecosystem function ecosystem water potential Ecosystems forest water content global change hydraulic conductivity Models, Theoretical Moisture content moisture release curves mortality Plant tissues Plants (botany) Rainforests Remote sensing satellites savannas Scaling Stomata Temperate forests tree hydraulics tropical rain forests Vegetation Water Water - analysis Water content Water potential Water relations Water storage |
title | A Theoretical Framework to Quantify Ecosystem Pressure‐Volume Relationships |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T21%3A36%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Theoretical%20Framework%20to%20Quantify%20Ecosystem%20Pressure%E2%80%90Volume%20Relationships&rft.jtitle=Global%20change%20biology&rft.au=Binks,%20Oliver&rft.date=2024-11&rft.volume=30&rft.issue=11&rft.spage=e17567&rft.epage=n/a&rft.pages=e17567-n/a&rft.issn=1354-1013&rft.eissn=1365-2486&rft_id=info:doi/10.1111/gcb.17567&rft_dat=%3Cproquest_cross%3E3133599599%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133599599&rft_id=info:pmid/39501460&rfr_iscdi=true |