Bioinformatic Workflows for Deriving Transcriptomic Points of Departure: Current status, Data Gaps, and Research Priorities
There is a pressing need to increase the efficiency and reliability of toxicological safety assessment for protecting human health and the environment. While conventional toxicology tests rely on measuring apical changes in vertebrate models, there is increasing interest in the use of molecular info...
Gespeichert in:
Veröffentlicht in: | Toxicological sciences 2024-11 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Toxicological sciences |
container_volume | |
creator | O'Brien, Jason Mitchell, Constance Auerbach, Scott Doonan, Liam Ewald, Jessica Everett, Logan Faranda, Adam Johnson, Kamin Reardon, Anthony Rooney, John Shao, Kan Stainforth, Robert Wheeler, Matthew Dalmas Wilk, Deidre Williams, Andrew Yauk, Carole Costa, Eduardo |
description | There is a pressing need to increase the efficiency and reliability of toxicological safety assessment for protecting human health and the environment. While conventional toxicology tests rely on measuring apical changes in vertebrate models, there is increasing interest in the use of molecular information from animal and in vitro studies to inform safety assessment. One promising and pragmatic application of molecular information involves the derivation of transcriptomic points of departure (tPODs). Transcriptomic analyses provide a snapshot of global molecular changes that reflect cellular responses to stressors and progression toward disease. A tPOD identifies the dose level below which a concerted change in gene expression is not expected in a biological system in response to a chemical. A common approach to derive such a tPOD consists of modeling the dose-response behavior for each gene independently and then aggregating the gene-level data into a single tPOD. While different implementations of this approach are possible, as discussed in this manuscript, research strongly supports the overall idea that reference doses produced using tPODs are health protective. An advantage of this approach is that tPODs can be generated in shorter term studies (e.g., days) compared to apical endpoints from conventional tests (e.g., 90-day sub-chronic rodent tests). Moreover, research strongly supports the idea that reference doses produced using tPODs are health protective. Given the potential application of tPODs in regulatory toxicology testing, rigorous and reproducible wet and dry laboratory methodologies for their derivation are required. This review summarizes the current state of the science regarding the study design and bioinformatics workflows for tPOD derivation. We identify standards of practice and sources of variability in tPOD generation, data gaps, and areas of uncertainty. We provide recommendations for research to address barriers and promote adoption in regulatory decision making. |
doi_str_mv | 10.1093/toxsci/kfae145 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3124681630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3124681630</sourcerecordid><originalsourceid>FETCH-LOGICAL-c180t-e91bb70020386f5b9bb7e04e5f2ef95e2231219d9bc4d7ac69a74d1b96cb2d883</originalsourceid><addsrcrecordid>eNo9kL1PwzAUxC0EoqWwMiKPDKTYSZrGbNBCQapEhYoYI8d5BtMmDs8OH-Kfx6iF6d07_e6GI-SYsyFnIjn39tMpc77SEng62iH94GYRE7HY3eqM5axHDpx7ZYzzjIl90ktEKgQXSZ98XxlrGm2xlt4o-mRxpdf2w9Fg0SmgeTfNM12ibJxC03pbB2oRIt5RqwPRSvQdwgWddIjQeOq89J07o1PpJZ3JNkjZVPQBHEhUL3SBxqLxBtwh2dNy7eBoewfk8eZ6ObmN5vezu8nlPFI8Zz4CwctyzFjMkjzTo1KED1gKIx2DFiOI44THXFSiVGk1lioTcpxWvBSZKuMqz5MBOd30tmjfOnC-qI1TsF7LBmznihBPs5xnCQvocIMqtM4h6KJFU0v8KjgrfgcvNoMX28FD4GTb3ZU1VP_438LJD8sDgNs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3124681630</pqid></control><display><type>article</type><title>Bioinformatic Workflows for Deriving Transcriptomic Points of Departure: Current status, Data Gaps, and Research Priorities</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>O'Brien, Jason ; Mitchell, Constance ; Auerbach, Scott ; Doonan, Liam ; Ewald, Jessica ; Everett, Logan ; Faranda, Adam ; Johnson, Kamin ; Reardon, Anthony ; Rooney, John ; Shao, Kan ; Stainforth, Robert ; Wheeler, Matthew ; Dalmas Wilk, Deidre ; Williams, Andrew ; Yauk, Carole ; Costa, Eduardo</creator><creatorcontrib>O'Brien, Jason ; Mitchell, Constance ; Auerbach, Scott ; Doonan, Liam ; Ewald, Jessica ; Everett, Logan ; Faranda, Adam ; Johnson, Kamin ; Reardon, Anthony ; Rooney, John ; Shao, Kan ; Stainforth, Robert ; Wheeler, Matthew ; Dalmas Wilk, Deidre ; Williams, Andrew ; Yauk, Carole ; Costa, Eduardo</creatorcontrib><description>There is a pressing need to increase the efficiency and reliability of toxicological safety assessment for protecting human health and the environment. While conventional toxicology tests rely on measuring apical changes in vertebrate models, there is increasing interest in the use of molecular information from animal and in vitro studies to inform safety assessment. One promising and pragmatic application of molecular information involves the derivation of transcriptomic points of departure (tPODs). Transcriptomic analyses provide a snapshot of global molecular changes that reflect cellular responses to stressors and progression toward disease. A tPOD identifies the dose level below which a concerted change in gene expression is not expected in a biological system in response to a chemical. A common approach to derive such a tPOD consists of modeling the dose-response behavior for each gene independently and then aggregating the gene-level data into a single tPOD. While different implementations of this approach are possible, as discussed in this manuscript, research strongly supports the overall idea that reference doses produced using tPODs are health protective. An advantage of this approach is that tPODs can be generated in shorter term studies (e.g., days) compared to apical endpoints from conventional tests (e.g., 90-day sub-chronic rodent tests). Moreover, research strongly supports the idea that reference doses produced using tPODs are health protective. Given the potential application of tPODs in regulatory toxicology testing, rigorous and reproducible wet and dry laboratory methodologies for their derivation are required. This review summarizes the current state of the science regarding the study design and bioinformatics workflows for tPOD derivation. We identify standards of practice and sources of variability in tPOD generation, data gaps, and areas of uncertainty. We provide recommendations for research to address barriers and promote adoption in regulatory decision making.</description><identifier>ISSN: 1096-6080</identifier><identifier>ISSN: 1096-0929</identifier><identifier>EISSN: 1096-0929</identifier><identifier>DOI: 10.1093/toxsci/kfae145</identifier><identifier>PMID: 39499193</identifier><language>eng</language><publisher>United States</publisher><ispartof>Toxicological sciences, 2024-11</ispartof><rights>The Author(s) 2024. Published by Oxford University Press on behalf of the Society of Toxicology.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c180t-e91bb70020386f5b9bb7e04e5f2ef95e2231219d9bc4d7ac69a74d1b96cb2d883</cites><orcidid>0000-0002-7124-1229 ; 0000-0002-6294-3069 ; 0000-0002-2546-8940 ; 0000-0002-9713-6099 ; 0000-0002-6725-3454 ; 0000-0003-2359-6436 ; 0000-0003-4550-5566 ; 0000-0003-1052-7087</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39499193$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>O'Brien, Jason</creatorcontrib><creatorcontrib>Mitchell, Constance</creatorcontrib><creatorcontrib>Auerbach, Scott</creatorcontrib><creatorcontrib>Doonan, Liam</creatorcontrib><creatorcontrib>Ewald, Jessica</creatorcontrib><creatorcontrib>Everett, Logan</creatorcontrib><creatorcontrib>Faranda, Adam</creatorcontrib><creatorcontrib>Johnson, Kamin</creatorcontrib><creatorcontrib>Reardon, Anthony</creatorcontrib><creatorcontrib>Rooney, John</creatorcontrib><creatorcontrib>Shao, Kan</creatorcontrib><creatorcontrib>Stainforth, Robert</creatorcontrib><creatorcontrib>Wheeler, Matthew</creatorcontrib><creatorcontrib>Dalmas Wilk, Deidre</creatorcontrib><creatorcontrib>Williams, Andrew</creatorcontrib><creatorcontrib>Yauk, Carole</creatorcontrib><creatorcontrib>Costa, Eduardo</creatorcontrib><title>Bioinformatic Workflows for Deriving Transcriptomic Points of Departure: Current status, Data Gaps, and Research Priorities</title><title>Toxicological sciences</title><addtitle>Toxicol Sci</addtitle><description>There is a pressing need to increase the efficiency and reliability of toxicological safety assessment for protecting human health and the environment. While conventional toxicology tests rely on measuring apical changes in vertebrate models, there is increasing interest in the use of molecular information from animal and in vitro studies to inform safety assessment. One promising and pragmatic application of molecular information involves the derivation of transcriptomic points of departure (tPODs). Transcriptomic analyses provide a snapshot of global molecular changes that reflect cellular responses to stressors and progression toward disease. A tPOD identifies the dose level below which a concerted change in gene expression is not expected in a biological system in response to a chemical. A common approach to derive such a tPOD consists of modeling the dose-response behavior for each gene independently and then aggregating the gene-level data into a single tPOD. While different implementations of this approach are possible, as discussed in this manuscript, research strongly supports the overall idea that reference doses produced using tPODs are health protective. An advantage of this approach is that tPODs can be generated in shorter term studies (e.g., days) compared to apical endpoints from conventional tests (e.g., 90-day sub-chronic rodent tests). Moreover, research strongly supports the idea that reference doses produced using tPODs are health protective. Given the potential application of tPODs in regulatory toxicology testing, rigorous and reproducible wet and dry laboratory methodologies for their derivation are required. This review summarizes the current state of the science regarding the study design and bioinformatics workflows for tPOD derivation. We identify standards of practice and sources of variability in tPOD generation, data gaps, and areas of uncertainty. We provide recommendations for research to address barriers and promote adoption in regulatory decision making.</description><issn>1096-6080</issn><issn>1096-0929</issn><issn>1096-0929</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kL1PwzAUxC0EoqWwMiKPDKTYSZrGbNBCQapEhYoYI8d5BtMmDs8OH-Kfx6iF6d07_e6GI-SYsyFnIjn39tMpc77SEng62iH94GYRE7HY3eqM5axHDpx7ZYzzjIl90ktEKgQXSZ98XxlrGm2xlt4o-mRxpdf2w9Fg0SmgeTfNM12ibJxC03pbB2oRIt5RqwPRSvQdwgWddIjQeOq89J07o1PpJZ3JNkjZVPQBHEhUL3SBxqLxBtwh2dNy7eBoewfk8eZ6ObmN5vezu8nlPFI8Zz4CwctyzFjMkjzTo1KED1gKIx2DFiOI44THXFSiVGk1lioTcpxWvBSZKuMqz5MBOd30tmjfOnC-qI1TsF7LBmznihBPs5xnCQvocIMqtM4h6KJFU0v8KjgrfgcvNoMX28FD4GTb3ZU1VP_438LJD8sDgNs</recordid><startdate>20241105</startdate><enddate>20241105</enddate><creator>O'Brien, Jason</creator><creator>Mitchell, Constance</creator><creator>Auerbach, Scott</creator><creator>Doonan, Liam</creator><creator>Ewald, Jessica</creator><creator>Everett, Logan</creator><creator>Faranda, Adam</creator><creator>Johnson, Kamin</creator><creator>Reardon, Anthony</creator><creator>Rooney, John</creator><creator>Shao, Kan</creator><creator>Stainforth, Robert</creator><creator>Wheeler, Matthew</creator><creator>Dalmas Wilk, Deidre</creator><creator>Williams, Andrew</creator><creator>Yauk, Carole</creator><creator>Costa, Eduardo</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7124-1229</orcidid><orcidid>https://orcid.org/0000-0002-6294-3069</orcidid><orcidid>https://orcid.org/0000-0002-2546-8940</orcidid><orcidid>https://orcid.org/0000-0002-9713-6099</orcidid><orcidid>https://orcid.org/0000-0002-6725-3454</orcidid><orcidid>https://orcid.org/0000-0003-2359-6436</orcidid><orcidid>https://orcid.org/0000-0003-4550-5566</orcidid><orcidid>https://orcid.org/0000-0003-1052-7087</orcidid></search><sort><creationdate>20241105</creationdate><title>Bioinformatic Workflows for Deriving Transcriptomic Points of Departure: Current status, Data Gaps, and Research Priorities</title><author>O'Brien, Jason ; Mitchell, Constance ; Auerbach, Scott ; Doonan, Liam ; Ewald, Jessica ; Everett, Logan ; Faranda, Adam ; Johnson, Kamin ; Reardon, Anthony ; Rooney, John ; Shao, Kan ; Stainforth, Robert ; Wheeler, Matthew ; Dalmas Wilk, Deidre ; Williams, Andrew ; Yauk, Carole ; Costa, Eduardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c180t-e91bb70020386f5b9bb7e04e5f2ef95e2231219d9bc4d7ac69a74d1b96cb2d883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>O'Brien, Jason</creatorcontrib><creatorcontrib>Mitchell, Constance</creatorcontrib><creatorcontrib>Auerbach, Scott</creatorcontrib><creatorcontrib>Doonan, Liam</creatorcontrib><creatorcontrib>Ewald, Jessica</creatorcontrib><creatorcontrib>Everett, Logan</creatorcontrib><creatorcontrib>Faranda, Adam</creatorcontrib><creatorcontrib>Johnson, Kamin</creatorcontrib><creatorcontrib>Reardon, Anthony</creatorcontrib><creatorcontrib>Rooney, John</creatorcontrib><creatorcontrib>Shao, Kan</creatorcontrib><creatorcontrib>Stainforth, Robert</creatorcontrib><creatorcontrib>Wheeler, Matthew</creatorcontrib><creatorcontrib>Dalmas Wilk, Deidre</creatorcontrib><creatorcontrib>Williams, Andrew</creatorcontrib><creatorcontrib>Yauk, Carole</creatorcontrib><creatorcontrib>Costa, Eduardo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Toxicological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>O'Brien, Jason</au><au>Mitchell, Constance</au><au>Auerbach, Scott</au><au>Doonan, Liam</au><au>Ewald, Jessica</au><au>Everett, Logan</au><au>Faranda, Adam</au><au>Johnson, Kamin</au><au>Reardon, Anthony</au><au>Rooney, John</au><au>Shao, Kan</au><au>Stainforth, Robert</au><au>Wheeler, Matthew</au><au>Dalmas Wilk, Deidre</au><au>Williams, Andrew</au><au>Yauk, Carole</au><au>Costa, Eduardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bioinformatic Workflows for Deriving Transcriptomic Points of Departure: Current status, Data Gaps, and Research Priorities</atitle><jtitle>Toxicological sciences</jtitle><addtitle>Toxicol Sci</addtitle><date>2024-11-05</date><risdate>2024</risdate><issn>1096-6080</issn><issn>1096-0929</issn><eissn>1096-0929</eissn><abstract>There is a pressing need to increase the efficiency and reliability of toxicological safety assessment for protecting human health and the environment. While conventional toxicology tests rely on measuring apical changes in vertebrate models, there is increasing interest in the use of molecular information from animal and in vitro studies to inform safety assessment. One promising and pragmatic application of molecular information involves the derivation of transcriptomic points of departure (tPODs). Transcriptomic analyses provide a snapshot of global molecular changes that reflect cellular responses to stressors and progression toward disease. A tPOD identifies the dose level below which a concerted change in gene expression is not expected in a biological system in response to a chemical. A common approach to derive such a tPOD consists of modeling the dose-response behavior for each gene independently and then aggregating the gene-level data into a single tPOD. While different implementations of this approach are possible, as discussed in this manuscript, research strongly supports the overall idea that reference doses produced using tPODs are health protective. An advantage of this approach is that tPODs can be generated in shorter term studies (e.g., days) compared to apical endpoints from conventional tests (e.g., 90-day sub-chronic rodent tests). Moreover, research strongly supports the idea that reference doses produced using tPODs are health protective. Given the potential application of tPODs in regulatory toxicology testing, rigorous and reproducible wet and dry laboratory methodologies for their derivation are required. This review summarizes the current state of the science regarding the study design and bioinformatics workflows for tPOD derivation. We identify standards of practice and sources of variability in tPOD generation, data gaps, and areas of uncertainty. We provide recommendations for research to address barriers and promote adoption in regulatory decision making.</abstract><cop>United States</cop><pmid>39499193</pmid><doi>10.1093/toxsci/kfae145</doi><orcidid>https://orcid.org/0000-0002-7124-1229</orcidid><orcidid>https://orcid.org/0000-0002-6294-3069</orcidid><orcidid>https://orcid.org/0000-0002-2546-8940</orcidid><orcidid>https://orcid.org/0000-0002-9713-6099</orcidid><orcidid>https://orcid.org/0000-0002-6725-3454</orcidid><orcidid>https://orcid.org/0000-0003-2359-6436</orcidid><orcidid>https://orcid.org/0000-0003-4550-5566</orcidid><orcidid>https://orcid.org/0000-0003-1052-7087</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1096-6080 |
ispartof | Toxicological sciences, 2024-11 |
issn | 1096-6080 1096-0929 1096-0929 |
language | eng |
recordid | cdi_proquest_miscellaneous_3124681630 |
source | Oxford University Press Journals All Titles (1996-Current) |
title | Bioinformatic Workflows for Deriving Transcriptomic Points of Departure: Current status, Data Gaps, and Research Priorities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T10%3A39%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bioinformatic%20Workflows%20for%20Deriving%20Transcriptomic%20Points%20of%20Departure:%20Current%20status,%20Data%20Gaps,%20and%20Research%20Priorities&rft.jtitle=Toxicological%20sciences&rft.au=O'Brien,%20Jason&rft.date=2024-11-05&rft.issn=1096-6080&rft.eissn=1096-0929&rft_id=info:doi/10.1093/toxsci/kfae145&rft_dat=%3Cproquest_cross%3E3124681630%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3124681630&rft_id=info:pmid/39499193&rfr_iscdi=true |