Bioinformatic Workflows for Deriving Transcriptomic Points of Departure: Current status, Data Gaps, and Research Priorities

There is a pressing need to increase the efficiency and reliability of toxicological safety assessment for protecting human health and the environment. While conventional toxicology tests rely on measuring apical changes in vertebrate models, there is increasing interest in the use of molecular info...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Toxicological sciences 2024-11
Hauptverfasser: O'Brien, Jason, Mitchell, Constance, Auerbach, Scott, Doonan, Liam, Ewald, Jessica, Everett, Logan, Faranda, Adam, Johnson, Kamin, Reardon, Anthony, Rooney, John, Shao, Kan, Stainforth, Robert, Wheeler, Matthew, Dalmas Wilk, Deidre, Williams, Andrew, Yauk, Carole, Costa, Eduardo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Toxicological sciences
container_volume
creator O'Brien, Jason
Mitchell, Constance
Auerbach, Scott
Doonan, Liam
Ewald, Jessica
Everett, Logan
Faranda, Adam
Johnson, Kamin
Reardon, Anthony
Rooney, John
Shao, Kan
Stainforth, Robert
Wheeler, Matthew
Dalmas Wilk, Deidre
Williams, Andrew
Yauk, Carole
Costa, Eduardo
description There is a pressing need to increase the efficiency and reliability of toxicological safety assessment for protecting human health and the environment. While conventional toxicology tests rely on measuring apical changes in vertebrate models, there is increasing interest in the use of molecular information from animal and in vitro studies to inform safety assessment. One promising and pragmatic application of molecular information involves the derivation of transcriptomic points of departure (tPODs). Transcriptomic analyses provide a snapshot of global molecular changes that reflect cellular responses to stressors and progression toward disease. A tPOD identifies the dose level below which a concerted change in gene expression is not expected in a biological system in response to a chemical. A common approach to derive such a tPOD consists of modeling the dose-response behavior for each gene independently and then aggregating the gene-level data into a single tPOD. While different implementations of this approach are possible, as discussed in this manuscript, research strongly supports the overall idea that reference doses produced using tPODs are health protective. An advantage of this approach is that tPODs can be generated in shorter term studies (e.g., days) compared to apical endpoints from conventional tests (e.g., 90-day sub-chronic rodent tests). Moreover, research strongly supports the idea that reference doses produced using tPODs are health protective. Given the potential application of tPODs in regulatory toxicology testing, rigorous and reproducible wet and dry laboratory methodologies for their derivation are required. This review summarizes the current state of the science regarding the study design and bioinformatics workflows for tPOD derivation. We identify standards of practice and sources of variability in tPOD generation, data gaps, and areas of uncertainty. We provide recommendations for research to address barriers and promote adoption in regulatory decision making.
doi_str_mv 10.1093/toxsci/kfae145
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3124681630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3124681630</sourcerecordid><originalsourceid>FETCH-LOGICAL-c180t-e91bb70020386f5b9bb7e04e5f2ef95e2231219d9bc4d7ac69a74d1b96cb2d883</originalsourceid><addsrcrecordid>eNo9kL1PwzAUxC0EoqWwMiKPDKTYSZrGbNBCQapEhYoYI8d5BtMmDs8OH-Kfx6iF6d07_e6GI-SYsyFnIjn39tMpc77SEng62iH94GYRE7HY3eqM5axHDpx7ZYzzjIl90ktEKgQXSZ98XxlrGm2xlt4o-mRxpdf2w9Fg0SmgeTfNM12ibJxC03pbB2oRIt5RqwPRSvQdwgWddIjQeOq89J07o1PpJZ3JNkjZVPQBHEhUL3SBxqLxBtwh2dNy7eBoewfk8eZ6ObmN5vezu8nlPFI8Zz4CwctyzFjMkjzTo1KED1gKIx2DFiOI44THXFSiVGk1lioTcpxWvBSZKuMqz5MBOd30tmjfOnC-qI1TsF7LBmznihBPs5xnCQvocIMqtM4h6KJFU0v8KjgrfgcvNoMX28FD4GTb3ZU1VP_438LJD8sDgNs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3124681630</pqid></control><display><type>article</type><title>Bioinformatic Workflows for Deriving Transcriptomic Points of Departure: Current status, Data Gaps, and Research Priorities</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>O'Brien, Jason ; Mitchell, Constance ; Auerbach, Scott ; Doonan, Liam ; Ewald, Jessica ; Everett, Logan ; Faranda, Adam ; Johnson, Kamin ; Reardon, Anthony ; Rooney, John ; Shao, Kan ; Stainforth, Robert ; Wheeler, Matthew ; Dalmas Wilk, Deidre ; Williams, Andrew ; Yauk, Carole ; Costa, Eduardo</creator><creatorcontrib>O'Brien, Jason ; Mitchell, Constance ; Auerbach, Scott ; Doonan, Liam ; Ewald, Jessica ; Everett, Logan ; Faranda, Adam ; Johnson, Kamin ; Reardon, Anthony ; Rooney, John ; Shao, Kan ; Stainforth, Robert ; Wheeler, Matthew ; Dalmas Wilk, Deidre ; Williams, Andrew ; Yauk, Carole ; Costa, Eduardo</creatorcontrib><description>There is a pressing need to increase the efficiency and reliability of toxicological safety assessment for protecting human health and the environment. While conventional toxicology tests rely on measuring apical changes in vertebrate models, there is increasing interest in the use of molecular information from animal and in vitro studies to inform safety assessment. One promising and pragmatic application of molecular information involves the derivation of transcriptomic points of departure (tPODs). Transcriptomic analyses provide a snapshot of global molecular changes that reflect cellular responses to stressors and progression toward disease. A tPOD identifies the dose level below which a concerted change in gene expression is not expected in a biological system in response to a chemical. A common approach to derive such a tPOD consists of modeling the dose-response behavior for each gene independently and then aggregating the gene-level data into a single tPOD. While different implementations of this approach are possible, as discussed in this manuscript, research strongly supports the overall idea that reference doses produced using tPODs are health protective. An advantage of this approach is that tPODs can be generated in shorter term studies (e.g., days) compared to apical endpoints from conventional tests (e.g., 90-day sub-chronic rodent tests). Moreover, research strongly supports the idea that reference doses produced using tPODs are health protective. Given the potential application of tPODs in regulatory toxicology testing, rigorous and reproducible wet and dry laboratory methodologies for their derivation are required. This review summarizes the current state of the science regarding the study design and bioinformatics workflows for tPOD derivation. We identify standards of practice and sources of variability in tPOD generation, data gaps, and areas of uncertainty. We provide recommendations for research to address barriers and promote adoption in regulatory decision making.</description><identifier>ISSN: 1096-6080</identifier><identifier>ISSN: 1096-0929</identifier><identifier>EISSN: 1096-0929</identifier><identifier>DOI: 10.1093/toxsci/kfae145</identifier><identifier>PMID: 39499193</identifier><language>eng</language><publisher>United States</publisher><ispartof>Toxicological sciences, 2024-11</ispartof><rights>The Author(s) 2024. Published by Oxford University Press on behalf of the Society of Toxicology.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c180t-e91bb70020386f5b9bb7e04e5f2ef95e2231219d9bc4d7ac69a74d1b96cb2d883</cites><orcidid>0000-0002-7124-1229 ; 0000-0002-6294-3069 ; 0000-0002-2546-8940 ; 0000-0002-9713-6099 ; 0000-0002-6725-3454 ; 0000-0003-2359-6436 ; 0000-0003-4550-5566 ; 0000-0003-1052-7087</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39499193$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>O'Brien, Jason</creatorcontrib><creatorcontrib>Mitchell, Constance</creatorcontrib><creatorcontrib>Auerbach, Scott</creatorcontrib><creatorcontrib>Doonan, Liam</creatorcontrib><creatorcontrib>Ewald, Jessica</creatorcontrib><creatorcontrib>Everett, Logan</creatorcontrib><creatorcontrib>Faranda, Adam</creatorcontrib><creatorcontrib>Johnson, Kamin</creatorcontrib><creatorcontrib>Reardon, Anthony</creatorcontrib><creatorcontrib>Rooney, John</creatorcontrib><creatorcontrib>Shao, Kan</creatorcontrib><creatorcontrib>Stainforth, Robert</creatorcontrib><creatorcontrib>Wheeler, Matthew</creatorcontrib><creatorcontrib>Dalmas Wilk, Deidre</creatorcontrib><creatorcontrib>Williams, Andrew</creatorcontrib><creatorcontrib>Yauk, Carole</creatorcontrib><creatorcontrib>Costa, Eduardo</creatorcontrib><title>Bioinformatic Workflows for Deriving Transcriptomic Points of Departure: Current status, Data Gaps, and Research Priorities</title><title>Toxicological sciences</title><addtitle>Toxicol Sci</addtitle><description>There is a pressing need to increase the efficiency and reliability of toxicological safety assessment for protecting human health and the environment. While conventional toxicology tests rely on measuring apical changes in vertebrate models, there is increasing interest in the use of molecular information from animal and in vitro studies to inform safety assessment. One promising and pragmatic application of molecular information involves the derivation of transcriptomic points of departure (tPODs). Transcriptomic analyses provide a snapshot of global molecular changes that reflect cellular responses to stressors and progression toward disease. A tPOD identifies the dose level below which a concerted change in gene expression is not expected in a biological system in response to a chemical. A common approach to derive such a tPOD consists of modeling the dose-response behavior for each gene independently and then aggregating the gene-level data into a single tPOD. While different implementations of this approach are possible, as discussed in this manuscript, research strongly supports the overall idea that reference doses produced using tPODs are health protective. An advantage of this approach is that tPODs can be generated in shorter term studies (e.g., days) compared to apical endpoints from conventional tests (e.g., 90-day sub-chronic rodent tests). Moreover, research strongly supports the idea that reference doses produced using tPODs are health protective. Given the potential application of tPODs in regulatory toxicology testing, rigorous and reproducible wet and dry laboratory methodologies for their derivation are required. This review summarizes the current state of the science regarding the study design and bioinformatics workflows for tPOD derivation. We identify standards of practice and sources of variability in tPOD generation, data gaps, and areas of uncertainty. We provide recommendations for research to address barriers and promote adoption in regulatory decision making.</description><issn>1096-6080</issn><issn>1096-0929</issn><issn>1096-0929</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kL1PwzAUxC0EoqWwMiKPDKTYSZrGbNBCQapEhYoYI8d5BtMmDs8OH-Kfx6iF6d07_e6GI-SYsyFnIjn39tMpc77SEng62iH94GYRE7HY3eqM5axHDpx7ZYzzjIl90ktEKgQXSZ98XxlrGm2xlt4o-mRxpdf2w9Fg0SmgeTfNM12ibJxC03pbB2oRIt5RqwPRSvQdwgWddIjQeOq89J07o1PpJZ3JNkjZVPQBHEhUL3SBxqLxBtwh2dNy7eBoewfk8eZ6ObmN5vezu8nlPFI8Zz4CwctyzFjMkjzTo1KED1gKIx2DFiOI44THXFSiVGk1lioTcpxWvBSZKuMqz5MBOd30tmjfOnC-qI1TsF7LBmznihBPs5xnCQvocIMqtM4h6KJFU0v8KjgrfgcvNoMX28FD4GTb3ZU1VP_438LJD8sDgNs</recordid><startdate>20241105</startdate><enddate>20241105</enddate><creator>O'Brien, Jason</creator><creator>Mitchell, Constance</creator><creator>Auerbach, Scott</creator><creator>Doonan, Liam</creator><creator>Ewald, Jessica</creator><creator>Everett, Logan</creator><creator>Faranda, Adam</creator><creator>Johnson, Kamin</creator><creator>Reardon, Anthony</creator><creator>Rooney, John</creator><creator>Shao, Kan</creator><creator>Stainforth, Robert</creator><creator>Wheeler, Matthew</creator><creator>Dalmas Wilk, Deidre</creator><creator>Williams, Andrew</creator><creator>Yauk, Carole</creator><creator>Costa, Eduardo</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7124-1229</orcidid><orcidid>https://orcid.org/0000-0002-6294-3069</orcidid><orcidid>https://orcid.org/0000-0002-2546-8940</orcidid><orcidid>https://orcid.org/0000-0002-9713-6099</orcidid><orcidid>https://orcid.org/0000-0002-6725-3454</orcidid><orcidid>https://orcid.org/0000-0003-2359-6436</orcidid><orcidid>https://orcid.org/0000-0003-4550-5566</orcidid><orcidid>https://orcid.org/0000-0003-1052-7087</orcidid></search><sort><creationdate>20241105</creationdate><title>Bioinformatic Workflows for Deriving Transcriptomic Points of Departure: Current status, Data Gaps, and Research Priorities</title><author>O'Brien, Jason ; Mitchell, Constance ; Auerbach, Scott ; Doonan, Liam ; Ewald, Jessica ; Everett, Logan ; Faranda, Adam ; Johnson, Kamin ; Reardon, Anthony ; Rooney, John ; Shao, Kan ; Stainforth, Robert ; Wheeler, Matthew ; Dalmas Wilk, Deidre ; Williams, Andrew ; Yauk, Carole ; Costa, Eduardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c180t-e91bb70020386f5b9bb7e04e5f2ef95e2231219d9bc4d7ac69a74d1b96cb2d883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>O'Brien, Jason</creatorcontrib><creatorcontrib>Mitchell, Constance</creatorcontrib><creatorcontrib>Auerbach, Scott</creatorcontrib><creatorcontrib>Doonan, Liam</creatorcontrib><creatorcontrib>Ewald, Jessica</creatorcontrib><creatorcontrib>Everett, Logan</creatorcontrib><creatorcontrib>Faranda, Adam</creatorcontrib><creatorcontrib>Johnson, Kamin</creatorcontrib><creatorcontrib>Reardon, Anthony</creatorcontrib><creatorcontrib>Rooney, John</creatorcontrib><creatorcontrib>Shao, Kan</creatorcontrib><creatorcontrib>Stainforth, Robert</creatorcontrib><creatorcontrib>Wheeler, Matthew</creatorcontrib><creatorcontrib>Dalmas Wilk, Deidre</creatorcontrib><creatorcontrib>Williams, Andrew</creatorcontrib><creatorcontrib>Yauk, Carole</creatorcontrib><creatorcontrib>Costa, Eduardo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Toxicological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>O'Brien, Jason</au><au>Mitchell, Constance</au><au>Auerbach, Scott</au><au>Doonan, Liam</au><au>Ewald, Jessica</au><au>Everett, Logan</au><au>Faranda, Adam</au><au>Johnson, Kamin</au><au>Reardon, Anthony</au><au>Rooney, John</au><au>Shao, Kan</au><au>Stainforth, Robert</au><au>Wheeler, Matthew</au><au>Dalmas Wilk, Deidre</au><au>Williams, Andrew</au><au>Yauk, Carole</au><au>Costa, Eduardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bioinformatic Workflows for Deriving Transcriptomic Points of Departure: Current status, Data Gaps, and Research Priorities</atitle><jtitle>Toxicological sciences</jtitle><addtitle>Toxicol Sci</addtitle><date>2024-11-05</date><risdate>2024</risdate><issn>1096-6080</issn><issn>1096-0929</issn><eissn>1096-0929</eissn><abstract>There is a pressing need to increase the efficiency and reliability of toxicological safety assessment for protecting human health and the environment. While conventional toxicology tests rely on measuring apical changes in vertebrate models, there is increasing interest in the use of molecular information from animal and in vitro studies to inform safety assessment. One promising and pragmatic application of molecular information involves the derivation of transcriptomic points of departure (tPODs). Transcriptomic analyses provide a snapshot of global molecular changes that reflect cellular responses to stressors and progression toward disease. A tPOD identifies the dose level below which a concerted change in gene expression is not expected in a biological system in response to a chemical. A common approach to derive such a tPOD consists of modeling the dose-response behavior for each gene independently and then aggregating the gene-level data into a single tPOD. While different implementations of this approach are possible, as discussed in this manuscript, research strongly supports the overall idea that reference doses produced using tPODs are health protective. An advantage of this approach is that tPODs can be generated in shorter term studies (e.g., days) compared to apical endpoints from conventional tests (e.g., 90-day sub-chronic rodent tests). Moreover, research strongly supports the idea that reference doses produced using tPODs are health protective. Given the potential application of tPODs in regulatory toxicology testing, rigorous and reproducible wet and dry laboratory methodologies for their derivation are required. This review summarizes the current state of the science regarding the study design and bioinformatics workflows for tPOD derivation. We identify standards of practice and sources of variability in tPOD generation, data gaps, and areas of uncertainty. We provide recommendations for research to address barriers and promote adoption in regulatory decision making.</abstract><cop>United States</cop><pmid>39499193</pmid><doi>10.1093/toxsci/kfae145</doi><orcidid>https://orcid.org/0000-0002-7124-1229</orcidid><orcidid>https://orcid.org/0000-0002-6294-3069</orcidid><orcidid>https://orcid.org/0000-0002-2546-8940</orcidid><orcidid>https://orcid.org/0000-0002-9713-6099</orcidid><orcidid>https://orcid.org/0000-0002-6725-3454</orcidid><orcidid>https://orcid.org/0000-0003-2359-6436</orcidid><orcidid>https://orcid.org/0000-0003-4550-5566</orcidid><orcidid>https://orcid.org/0000-0003-1052-7087</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1096-6080
ispartof Toxicological sciences, 2024-11
issn 1096-6080
1096-0929
1096-0929
language eng
recordid cdi_proquest_miscellaneous_3124681630
source Oxford University Press Journals All Titles (1996-Current)
title Bioinformatic Workflows for Deriving Transcriptomic Points of Departure: Current status, Data Gaps, and Research Priorities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T10%3A39%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bioinformatic%20Workflows%20for%20Deriving%20Transcriptomic%20Points%20of%20Departure:%20Current%20status,%20Data%20Gaps,%20and%20Research%20Priorities&rft.jtitle=Toxicological%20sciences&rft.au=O'Brien,%20Jason&rft.date=2024-11-05&rft.issn=1096-6080&rft.eissn=1096-0929&rft_id=info:doi/10.1093/toxsci/kfae145&rft_dat=%3Cproquest_cross%3E3124681630%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3124681630&rft_id=info:pmid/39499193&rfr_iscdi=true