Synthesis, spectral analysis, and DFT studies of the novel pyrano3,2-c quinoline-based 1,3,4-thiadiazole for enhanced solar cell performance

In this study, we synthesized a novel compound, 3-(5-amino-1,3,4-thiadiazol-2-yl)-6-ethyl-4-hydroxy-2H-pyrano[3,2-c]quinoline-2,5(6H)-dione (ATEHPQ), through a condensation reaction between 6-ethyl-4-hydroxy-2,5-dioxo-5,6-dihydro-2H-pyrano [3,2-c]quinoline-3-carboxaldehyde and thiosemicarbazide, fol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heliyon 2024-10, Vol.10 (20), p.e39468
Hauptverfasser: Alali, Ibtisam, Ibrahim, Magdy A, Roushdy, N, Badran, Al-Shimaa, Alsirhani, Alaa Muqbil, Farag, A A M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 20
container_start_page e39468
container_title Heliyon
container_volume 10
creator Alali, Ibtisam
Ibrahim, Magdy A
Roushdy, N
Badran, Al-Shimaa
Alsirhani, Alaa Muqbil
Farag, A A M
description In this study, we synthesized a novel compound, 3-(5-amino-1,3,4-thiadiazol-2-yl)-6-ethyl-4-hydroxy-2H-pyrano[3,2-c]quinoline-2,5(6H)-dione (ATEHPQ), through a condensation reaction between 6-ethyl-4-hydroxy-2,5-dioxo-5,6-dihydro-2H-pyrano [3,2-c]quinoline-3-carboxaldehyde and thiosemicarbazide, followed by oxidative cyclization. We characterized ATEHPQ using elemental analysis, IR, 1H and 13C NMR spectroscopy, and mass spectrometry. Density Functional Theory (DFT) calculations with the B3LYP/6-311++G(d,p) basis set were employed to optimize the molecular geometry and analyze global reactivity descriptors, including HOMO-LUMO energies. The Molecular Electrostatic Potential (MEP) map was used to identify reactive sites, and drug-likeness studies indicated potential pharmaceutical applications. Notably, ATEHPQ showed a higher first hyperpolarizability (βtot) compared to urea, suggesting its suitability for nonlinear optical applications. We also determined the Miller indices for ATEHPQ's preferred orientations using a specialized program. Williamson-Hall analysis revealed an average crystal size of 26.08 nm and a lattice strain of 6.3 × 10-3. The thin films exhibited three distinct absorption peaks at 2.8, 3.41, and 4.21 eV, with a direct energy gap of 2.43 eV. Dispersion parameters from the single oscillator model provided oscillator and dispersion energies of 3.12 eV and 14.21 eV, respectively, with a high-frequency dielectric constant of 4.71. The ATEHPQ thin films, when combined with n-Si, demonstrated significant improvements in photovoltaic performance: the open-circuit voltage (Voc) rose from 0.13 V to 0.521 V, the short-circuit current (Isc) increased from 0.253 mA to 2.94 mA, the fill factor (FF) improved from 0.238 to 0.33, and the efficiency (η) grew from 0.71 % to 4.64 % with increased illumination intensity. These results highlight the excellent photovoltaic and photodetection capabilities of ATEHPQ thin films, underscoring their potential for advanced optoelectronic and solar cell applications.In this study, we synthesized a novel compound, 3-(5-amino-1,3,4-thiadiazol-2-yl)-6-ethyl-4-hydroxy-2H-pyrano[3,2-c]quinoline-2,5(6H)-dione (ATEHPQ), through a condensation reaction between 6-ethyl-4-hydroxy-2,5-dioxo-5,6-dihydro-2H-pyrano [3,2-c]quinoline-3-carboxaldehyde and thiosemicarbazide, followed by oxidative cyclization. We characterized ATEHPQ using elemental analysis, IR, 1H and 13C NMR spectroscopy, and mass spectrometry. Density Functional Th
doi_str_mv 10.1016/j.heliyon.2024.e39468
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_3124126524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3124126524</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_31241265243</originalsourceid><addsrcrecordid>eNqVjL1Ow0AQhE8IJCLIIyBtSWGb-7NxaiCiJ3202Gv5osudc2sjmWfgoXEQBS3VjOabGSHulCyUVNXDoejJuzmGQkttCzIbW9UXYqWtLPPaWnn5x1-LNfNBSqnKuto8mpX4epvD2BM7zoAHasaEHjCgn38iDC08b3fA49Q6YogdLG0I8YM8DHPCEE2m8wZOkwvRu0D5OzK1oDKT2XzsHbYOP6Mn6GICCj2GZsEcPSZoyC8vlBZ0POe34qpDz7T-1Rtxv33ZPb3mQ4qniXjcHx2fRxgoTrw3Slulq1Jb84_qNx_0YXI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3124126524</pqid></control><display><type>article</type><title>Synthesis, spectral analysis, and DFT studies of the novel pyrano3,2-c quinoline-based 1,3,4-thiadiazole for enhanced solar cell performance</title><source>TestCollectionTL3OpenAccess</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Alali, Ibtisam ; Ibrahim, Magdy A ; Roushdy, N ; Badran, Al-Shimaa ; Alsirhani, Alaa Muqbil ; Farag, A A M</creator><creatorcontrib>Alali, Ibtisam ; Ibrahim, Magdy A ; Roushdy, N ; Badran, Al-Shimaa ; Alsirhani, Alaa Muqbil ; Farag, A A M</creatorcontrib><description>In this study, we synthesized a novel compound, 3-(5-amino-1,3,4-thiadiazol-2-yl)-6-ethyl-4-hydroxy-2H-pyrano[3,2-c]quinoline-2,5(6H)-dione (ATEHPQ), through a condensation reaction between 6-ethyl-4-hydroxy-2,5-dioxo-5,6-dihydro-2H-pyrano [3,2-c]quinoline-3-carboxaldehyde and thiosemicarbazide, followed by oxidative cyclization. We characterized ATEHPQ using elemental analysis, IR, 1H and 13C NMR spectroscopy, and mass spectrometry. Density Functional Theory (DFT) calculations with the B3LYP/6-311++G(d,p) basis set were employed to optimize the molecular geometry and analyze global reactivity descriptors, including HOMO-LUMO energies. The Molecular Electrostatic Potential (MEP) map was used to identify reactive sites, and drug-likeness studies indicated potential pharmaceutical applications. Notably, ATEHPQ showed a higher first hyperpolarizability (βtot) compared to urea, suggesting its suitability for nonlinear optical applications. We also determined the Miller indices for ATEHPQ's preferred orientations using a specialized program. Williamson-Hall analysis revealed an average crystal size of 26.08 nm and a lattice strain of 6.3 × 10-3. The thin films exhibited three distinct absorption peaks at 2.8, 3.41, and 4.21 eV, with a direct energy gap of 2.43 eV. Dispersion parameters from the single oscillator model provided oscillator and dispersion energies of 3.12 eV and 14.21 eV, respectively, with a high-frequency dielectric constant of 4.71. The ATEHPQ thin films, when combined with n-Si, demonstrated significant improvements in photovoltaic performance: the open-circuit voltage (Voc) rose from 0.13 V to 0.521 V, the short-circuit current (Isc) increased from 0.253 mA to 2.94 mA, the fill factor (FF) improved from 0.238 to 0.33, and the efficiency (η) grew from 0.71 % to 4.64 % with increased illumination intensity. These results highlight the excellent photovoltaic and photodetection capabilities of ATEHPQ thin films, underscoring their potential for advanced optoelectronic and solar cell applications.In this study, we synthesized a novel compound, 3-(5-amino-1,3,4-thiadiazol-2-yl)-6-ethyl-4-hydroxy-2H-pyrano[3,2-c]quinoline-2,5(6H)-dione (ATEHPQ), through a condensation reaction between 6-ethyl-4-hydroxy-2,5-dioxo-5,6-dihydro-2H-pyrano [3,2-c]quinoline-3-carboxaldehyde and thiosemicarbazide, followed by oxidative cyclization. We characterized ATEHPQ using elemental analysis, IR, 1H and 13C NMR spectroscopy, and mass spectrometry. Density Functional Theory (DFT) calculations with the B3LYP/6-311++G(d,p) basis set were employed to optimize the molecular geometry and analyze global reactivity descriptors, including HOMO-LUMO energies. The Molecular Electrostatic Potential (MEP) map was used to identify reactive sites, and drug-likeness studies indicated potential pharmaceutical applications. Notably, ATEHPQ showed a higher first hyperpolarizability (βtot) compared to urea, suggesting its suitability for nonlinear optical applications. We also determined the Miller indices for ATEHPQ's preferred orientations using a specialized program. Williamson-Hall analysis revealed an average crystal size of 26.08 nm and a lattice strain of 6.3 × 10-3. The thin films exhibited three distinct absorption peaks at 2.8, 3.41, and 4.21 eV, with a direct energy gap of 2.43 eV. Dispersion parameters from the single oscillator model provided oscillator and dispersion energies of 3.12 eV and 14.21 eV, respectively, with a high-frequency dielectric constant of 4.71. The ATEHPQ thin films, when combined with n-Si, demonstrated significant improvements in photovoltaic performance: the open-circuit voltage (Voc) rose from 0.13 V to 0.521 V, the short-circuit current (Isc) increased from 0.253 mA to 2.94 mA, the fill factor (FF) improved from 0.238 to 0.33, and the efficiency (η) grew from 0.71 % to 4.64 % with increased illumination intensity. These results highlight the excellent photovoltaic and photodetection capabilities of ATEHPQ thin films, underscoring their potential for advanced optoelectronic and solar cell applications.</description><identifier>ISSN: 2405-8440</identifier><identifier>EISSN: 2405-8440</identifier><identifier>DOI: 10.1016/j.heliyon.2024.e39468</identifier><language>eng</language><ispartof>Heliyon, 2024-10, Vol.10 (20), p.e39468</ispartof><rights>2024 The Authors. Published by Elsevier Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Alali, Ibtisam</creatorcontrib><creatorcontrib>Ibrahim, Magdy A</creatorcontrib><creatorcontrib>Roushdy, N</creatorcontrib><creatorcontrib>Badran, Al-Shimaa</creatorcontrib><creatorcontrib>Alsirhani, Alaa Muqbil</creatorcontrib><creatorcontrib>Farag, A A M</creatorcontrib><title>Synthesis, spectral analysis, and DFT studies of the novel pyrano3,2-c quinoline-based 1,3,4-thiadiazole for enhanced solar cell performance</title><title>Heliyon</title><description>In this study, we synthesized a novel compound, 3-(5-amino-1,3,4-thiadiazol-2-yl)-6-ethyl-4-hydroxy-2H-pyrano[3,2-c]quinoline-2,5(6H)-dione (ATEHPQ), through a condensation reaction between 6-ethyl-4-hydroxy-2,5-dioxo-5,6-dihydro-2H-pyrano [3,2-c]quinoline-3-carboxaldehyde and thiosemicarbazide, followed by oxidative cyclization. We characterized ATEHPQ using elemental analysis, IR, 1H and 13C NMR spectroscopy, and mass spectrometry. Density Functional Theory (DFT) calculations with the B3LYP/6-311++G(d,p) basis set were employed to optimize the molecular geometry and analyze global reactivity descriptors, including HOMO-LUMO energies. The Molecular Electrostatic Potential (MEP) map was used to identify reactive sites, and drug-likeness studies indicated potential pharmaceutical applications. Notably, ATEHPQ showed a higher first hyperpolarizability (βtot) compared to urea, suggesting its suitability for nonlinear optical applications. We also determined the Miller indices for ATEHPQ's preferred orientations using a specialized program. Williamson-Hall analysis revealed an average crystal size of 26.08 nm and a lattice strain of 6.3 × 10-3. The thin films exhibited three distinct absorption peaks at 2.8, 3.41, and 4.21 eV, with a direct energy gap of 2.43 eV. Dispersion parameters from the single oscillator model provided oscillator and dispersion energies of 3.12 eV and 14.21 eV, respectively, with a high-frequency dielectric constant of 4.71. The ATEHPQ thin films, when combined with n-Si, demonstrated significant improvements in photovoltaic performance: the open-circuit voltage (Voc) rose from 0.13 V to 0.521 V, the short-circuit current (Isc) increased from 0.253 mA to 2.94 mA, the fill factor (FF) improved from 0.238 to 0.33, and the efficiency (η) grew from 0.71 % to 4.64 % with increased illumination intensity. These results highlight the excellent photovoltaic and photodetection capabilities of ATEHPQ thin films, underscoring their potential for advanced optoelectronic and solar cell applications.In this study, we synthesized a novel compound, 3-(5-amino-1,3,4-thiadiazol-2-yl)-6-ethyl-4-hydroxy-2H-pyrano[3,2-c]quinoline-2,5(6H)-dione (ATEHPQ), through a condensation reaction between 6-ethyl-4-hydroxy-2,5-dioxo-5,6-dihydro-2H-pyrano [3,2-c]quinoline-3-carboxaldehyde and thiosemicarbazide, followed by oxidative cyclization. We characterized ATEHPQ using elemental analysis, IR, 1H and 13C NMR spectroscopy, and mass spectrometry. Density Functional Theory (DFT) calculations with the B3LYP/6-311++G(d,p) basis set were employed to optimize the molecular geometry and analyze global reactivity descriptors, including HOMO-LUMO energies. The Molecular Electrostatic Potential (MEP) map was used to identify reactive sites, and drug-likeness studies indicated potential pharmaceutical applications. Notably, ATEHPQ showed a higher first hyperpolarizability (βtot) compared to urea, suggesting its suitability for nonlinear optical applications. We also determined the Miller indices for ATEHPQ's preferred orientations using a specialized program. Williamson-Hall analysis revealed an average crystal size of 26.08 nm and a lattice strain of 6.3 × 10-3. The thin films exhibited three distinct absorption peaks at 2.8, 3.41, and 4.21 eV, with a direct energy gap of 2.43 eV. Dispersion parameters from the single oscillator model provided oscillator and dispersion energies of 3.12 eV and 14.21 eV, respectively, with a high-frequency dielectric constant of 4.71. The ATEHPQ thin films, when combined with n-Si, demonstrated significant improvements in photovoltaic performance: the open-circuit voltage (Voc) rose from 0.13 V to 0.521 V, the short-circuit current (Isc) increased from 0.253 mA to 2.94 mA, the fill factor (FF) improved from 0.238 to 0.33, and the efficiency (η) grew from 0.71 % to 4.64 % with increased illumination intensity. These results highlight the excellent photovoltaic and photodetection capabilities of ATEHPQ thin films, underscoring their potential for advanced optoelectronic and solar cell applications.</description><issn>2405-8440</issn><issn>2405-8440</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqVjL1Ow0AQhE8IJCLIIyBtSWGb-7NxaiCiJ3202Gv5osudc2sjmWfgoXEQBS3VjOabGSHulCyUVNXDoejJuzmGQkttCzIbW9UXYqWtLPPaWnn5x1-LNfNBSqnKuto8mpX4epvD2BM7zoAHasaEHjCgn38iDC08b3fA49Q6YogdLG0I8YM8DHPCEE2m8wZOkwvRu0D5OzK1oDKT2XzsHbYOP6Mn6GICCj2GZsEcPSZoyC8vlBZ0POe34qpDz7T-1Rtxv33ZPb3mQ4qniXjcHx2fRxgoTrw3Slulq1Jb84_qNx_0YXI</recordid><startdate>20241030</startdate><enddate>20241030</enddate><creator>Alali, Ibtisam</creator><creator>Ibrahim, Magdy A</creator><creator>Roushdy, N</creator><creator>Badran, Al-Shimaa</creator><creator>Alsirhani, Alaa Muqbil</creator><creator>Farag, A A M</creator><scope>7X8</scope></search><sort><creationdate>20241030</creationdate><title>Synthesis, spectral analysis, and DFT studies of the novel pyrano3,2-c quinoline-based 1,3,4-thiadiazole for enhanced solar cell performance</title><author>Alali, Ibtisam ; Ibrahim, Magdy A ; Roushdy, N ; Badran, Al-Shimaa ; Alsirhani, Alaa Muqbil ; Farag, A A M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_31241265243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alali, Ibtisam</creatorcontrib><creatorcontrib>Ibrahim, Magdy A</creatorcontrib><creatorcontrib>Roushdy, N</creatorcontrib><creatorcontrib>Badran, Al-Shimaa</creatorcontrib><creatorcontrib>Alsirhani, Alaa Muqbil</creatorcontrib><creatorcontrib>Farag, A A M</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>Heliyon</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alali, Ibtisam</au><au>Ibrahim, Magdy A</au><au>Roushdy, N</au><au>Badran, Al-Shimaa</au><au>Alsirhani, Alaa Muqbil</au><au>Farag, A A M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis, spectral analysis, and DFT studies of the novel pyrano3,2-c quinoline-based 1,3,4-thiadiazole for enhanced solar cell performance</atitle><jtitle>Heliyon</jtitle><date>2024-10-30</date><risdate>2024</risdate><volume>10</volume><issue>20</issue><spage>e39468</spage><pages>e39468-</pages><issn>2405-8440</issn><eissn>2405-8440</eissn><abstract>In this study, we synthesized a novel compound, 3-(5-amino-1,3,4-thiadiazol-2-yl)-6-ethyl-4-hydroxy-2H-pyrano[3,2-c]quinoline-2,5(6H)-dione (ATEHPQ), through a condensation reaction between 6-ethyl-4-hydroxy-2,5-dioxo-5,6-dihydro-2H-pyrano [3,2-c]quinoline-3-carboxaldehyde and thiosemicarbazide, followed by oxidative cyclization. We characterized ATEHPQ using elemental analysis, IR, 1H and 13C NMR spectroscopy, and mass spectrometry. Density Functional Theory (DFT) calculations with the B3LYP/6-311++G(d,p) basis set were employed to optimize the molecular geometry and analyze global reactivity descriptors, including HOMO-LUMO energies. The Molecular Electrostatic Potential (MEP) map was used to identify reactive sites, and drug-likeness studies indicated potential pharmaceutical applications. Notably, ATEHPQ showed a higher first hyperpolarizability (βtot) compared to urea, suggesting its suitability for nonlinear optical applications. We also determined the Miller indices for ATEHPQ's preferred orientations using a specialized program. Williamson-Hall analysis revealed an average crystal size of 26.08 nm and a lattice strain of 6.3 × 10-3. The thin films exhibited three distinct absorption peaks at 2.8, 3.41, and 4.21 eV, with a direct energy gap of 2.43 eV. Dispersion parameters from the single oscillator model provided oscillator and dispersion energies of 3.12 eV and 14.21 eV, respectively, with a high-frequency dielectric constant of 4.71. The ATEHPQ thin films, when combined with n-Si, demonstrated significant improvements in photovoltaic performance: the open-circuit voltage (Voc) rose from 0.13 V to 0.521 V, the short-circuit current (Isc) increased from 0.253 mA to 2.94 mA, the fill factor (FF) improved from 0.238 to 0.33, and the efficiency (η) grew from 0.71 % to 4.64 % with increased illumination intensity. These results highlight the excellent photovoltaic and photodetection capabilities of ATEHPQ thin films, underscoring their potential for advanced optoelectronic and solar cell applications.In this study, we synthesized a novel compound, 3-(5-amino-1,3,4-thiadiazol-2-yl)-6-ethyl-4-hydroxy-2H-pyrano[3,2-c]quinoline-2,5(6H)-dione (ATEHPQ), through a condensation reaction between 6-ethyl-4-hydroxy-2,5-dioxo-5,6-dihydro-2H-pyrano [3,2-c]quinoline-3-carboxaldehyde and thiosemicarbazide, followed by oxidative cyclization. We characterized ATEHPQ using elemental analysis, IR, 1H and 13C NMR spectroscopy, and mass spectrometry. Density Functional Theory (DFT) calculations with the B3LYP/6-311++G(d,p) basis set were employed to optimize the molecular geometry and analyze global reactivity descriptors, including HOMO-LUMO energies. The Molecular Electrostatic Potential (MEP) map was used to identify reactive sites, and drug-likeness studies indicated potential pharmaceutical applications. Notably, ATEHPQ showed a higher first hyperpolarizability (βtot) compared to urea, suggesting its suitability for nonlinear optical applications. We also determined the Miller indices for ATEHPQ's preferred orientations using a specialized program. Williamson-Hall analysis revealed an average crystal size of 26.08 nm and a lattice strain of 6.3 × 10-3. The thin films exhibited three distinct absorption peaks at 2.8, 3.41, and 4.21 eV, with a direct energy gap of 2.43 eV. Dispersion parameters from the single oscillator model provided oscillator and dispersion energies of 3.12 eV and 14.21 eV, respectively, with a high-frequency dielectric constant of 4.71. The ATEHPQ thin films, when combined with n-Si, demonstrated significant improvements in photovoltaic performance: the open-circuit voltage (Voc) rose from 0.13 V to 0.521 V, the short-circuit current (Isc) increased from 0.253 mA to 2.94 mA, the fill factor (FF) improved from 0.238 to 0.33, and the efficiency (η) grew from 0.71 % to 4.64 % with increased illumination intensity. These results highlight the excellent photovoltaic and photodetection capabilities of ATEHPQ thin films, underscoring their potential for advanced optoelectronic and solar cell applications.</abstract><doi>10.1016/j.heliyon.2024.e39468</doi></addata></record>
fulltext fulltext
identifier ISSN: 2405-8440
ispartof Heliyon, 2024-10, Vol.10 (20), p.e39468
issn 2405-8440
2405-8440
language eng
recordid cdi_proquest_miscellaneous_3124126524
source TestCollectionTL3OpenAccess; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
title Synthesis, spectral analysis, and DFT studies of the novel pyrano3,2-c quinoline-based 1,3,4-thiadiazole for enhanced solar cell performance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T08%3A42%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis,%20spectral%20analysis,%20and%20DFT%20studies%20of%20the%20novel%20pyrano3,2-c%20quinoline-based%201,3,4-thiadiazole%20for%20enhanced%20solar%20cell%20performance&rft.jtitle=Heliyon&rft.au=Alali,%20Ibtisam&rft.date=2024-10-30&rft.volume=10&rft.issue=20&rft.spage=e39468&rft.pages=e39468-&rft.issn=2405-8440&rft.eissn=2405-8440&rft_id=info:doi/10.1016/j.heliyon.2024.e39468&rft_dat=%3Cproquest%3E3124126524%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3124126524&rft_id=info:pmid/&rfr_iscdi=true