CHARM and EvoETR: Precision epigenetic tools for gene silencing
With the advent of gene editing technologies like CRISPR/Cas9, it has become possible to edit genomic regions of interest for research and therapeutic purposes. These technologies have also been adapted to alter gene expression without changing their DNA sequence, allowing epigenetic edits. While ge...
Gespeichert in:
Veröffentlicht in: | BioEssays 2025-01, Vol.47 (1), p.e2400186-n/a |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 1 |
container_start_page | e2400186 |
container_title | BioEssays |
container_volume | 47 |
creator | Pillai, Anirudh Verma, Vasundhara Galande, Sanjeev |
description | With the advent of gene editing technologies like CRISPR/Cas9, it has become possible to edit genomic regions of interest for research and therapeutic purposes. These technologies have also been adapted to alter gene expression without changing their DNA sequence, allowing epigenetic edits. While genetic editors make edits by cutting the genome at specified regions, epigenetic editors leverage the same targeting mechanism but act based on the epigenetic modifier fused to them, such as a methyltransferase. Here, we discuss two recently employed epigenetic editors (epi‐editors) that silenced target genes involved in disease to mitigate their effects. Neumann et al. reported the construction of an epigenetic editor called CHARM that could methylate and silence the prion gene in mouse brains and subsequently switch itself off. Additionally, Capelluti et al. developed an epi‐editor called EvoETR that knocked down Pcsk9 in the murine liver to reduce LDL levels. We aim to highlight the design principles underlying the design of these epi‐editors to inform future editor designs.
(A) CRISPR/Cas9 cuts DNA at specific sites, performing traditional gene editing. dCas9, a catalytically inactive version, binds to DNA without cutting and alters gene expression. (B) The Prnp gene in the brain was silenced by CHARM, which recruits DNMT3A to methylate the gene, delivered via CRISPR/dCas9 or ZFPs/TALEs, effectively reducing prion protein expression. (C) EvoETR targets the Pcsk9 gene in the liver using ZFPs fused to DNMT3A and DNMT3L to methylate and silence the gene, lowering LDL cholesterol levels without DNA breaks. (D) TALEs, ZFPs, and dCas9 are shown as interchangeable tools for epigenetic editing, capable of being fused with repressive domains to silence genes, offering flexible gene silencing strategies. |
doi_str_mv | 10.1002/bies.202400186 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3123805241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3123805241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2586-f651df9e966edc6cc9c0f089de9057488b1d28d7067edafff732ab31bde6003c3</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQQBdRbK1ePUrAi5fU2U2yH16klmoLFcWPc0h2Z8uWNFuzreK_N6VawYungeHNY3iEnFLoUwB2WToMfQYsBaCS75EuzRiNqRRyn3SB8SxWLBUdchTCHAAUZ-kh6SQqVTRVokuuh-PB031U1CYavfvRy9NV9NigdsH5OsKlm2GNK6ejlfdViKxvos0mCq7CWrt6dkwObFEFPPmePfJ6O3oZjuPpw91kOJjGmmWSx5Zn1FiFinM0mmutNFiQyqCCTKRSltQwaQRwgaaw1oqEFWVCS4McINFJj1xsvcvGv60xrPKFCxqrqqjRr0OeUJZIyFhKW_T8Dzr366Zuv2upVGSCK5m0VH9L6caH0KDNl41bFM1nTiHfpM03afNd2vbg7Fu7LhdodvhPyxZQW-CjjfP5jy6_mYyef-Vf8syDlg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3147576983</pqid></control><display><type>article</type><title>CHARM and EvoETR: Precision epigenetic tools for gene silencing</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Pillai, Anirudh ; Verma, Vasundhara ; Galande, Sanjeev</creator><creatorcontrib>Pillai, Anirudh ; Verma, Vasundhara ; Galande, Sanjeev</creatorcontrib><description>With the advent of gene editing technologies like CRISPR/Cas9, it has become possible to edit genomic regions of interest for research and therapeutic purposes. These technologies have also been adapted to alter gene expression without changing their DNA sequence, allowing epigenetic edits. While genetic editors make edits by cutting the genome at specified regions, epigenetic editors leverage the same targeting mechanism but act based on the epigenetic modifier fused to them, such as a methyltransferase. Here, we discuss two recently employed epigenetic editors (epi‐editors) that silenced target genes involved in disease to mitigate their effects. Neumann et al. reported the construction of an epigenetic editor called CHARM that could methylate and silence the prion gene in mouse brains and subsequently switch itself off. Additionally, Capelluti et al. developed an epi‐editor called EvoETR that knocked down Pcsk9 in the murine liver to reduce LDL levels. We aim to highlight the design principles underlying the design of these epi‐editors to inform future editor designs.
(A) CRISPR/Cas9 cuts DNA at specific sites, performing traditional gene editing. dCas9, a catalytically inactive version, binds to DNA without cutting and alters gene expression. (B) The Prnp gene in the brain was silenced by CHARM, which recruits DNMT3A to methylate the gene, delivered via CRISPR/dCas9 or ZFPs/TALEs, effectively reducing prion protein expression. (C) EvoETR targets the Pcsk9 gene in the liver using ZFPs fused to DNMT3A and DNMT3L to methylate and silence the gene, lowering LDL cholesterol levels without DNA breaks. (D) TALEs, ZFPs, and dCas9 are shown as interchangeable tools for epigenetic editing, capable of being fused with repressive domains to silence genes, offering flexible gene silencing strategies.</description><identifier>ISSN: 0265-9247</identifier><identifier>ISSN: 1521-1878</identifier><identifier>EISSN: 1521-1878</identifier><identifier>DOI: 10.1002/bies.202400186</identifier><identifier>PMID: 39491497</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Animals ; CpG methylation ; CRISPR ; CRISPR-Cas Systems ; DNA Methylation ; Editors ; Epigenesis, Genetic ; Epigenetics ; epigenome ; gene editing ; Gene Editing - methods ; Gene expression ; Gene Silencing ; Genetic modification ; Humans ; Low density lipoprotein ; Methyltransferase ; Mice ; Nucleotide sequence ; Prions - genetics ; Prions - metabolism ; Proprotein Convertase 9 - genetics ; Proprotein Convertase 9 - metabolism ; Therapeutic applications</subject><ispartof>BioEssays, 2025-01, Vol.47 (1), p.e2400186-n/a</ispartof><rights>2024 Wiley Periodicals LLC.</rights><rights>2025 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2586-f651df9e966edc6cc9c0f089de9057488b1d28d7067edafff732ab31bde6003c3</cites><orcidid>0000-0002-7251-1905 ; 0000-0001-8395-3920 ; 0009-0004-9876-0143</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbies.202400186$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbies.202400186$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39491497$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pillai, Anirudh</creatorcontrib><creatorcontrib>Verma, Vasundhara</creatorcontrib><creatorcontrib>Galande, Sanjeev</creatorcontrib><title>CHARM and EvoETR: Precision epigenetic tools for gene silencing</title><title>BioEssays</title><addtitle>Bioessays</addtitle><description>With the advent of gene editing technologies like CRISPR/Cas9, it has become possible to edit genomic regions of interest for research and therapeutic purposes. These technologies have also been adapted to alter gene expression without changing their DNA sequence, allowing epigenetic edits. While genetic editors make edits by cutting the genome at specified regions, epigenetic editors leverage the same targeting mechanism but act based on the epigenetic modifier fused to them, such as a methyltransferase. Here, we discuss two recently employed epigenetic editors (epi‐editors) that silenced target genes involved in disease to mitigate their effects. Neumann et al. reported the construction of an epigenetic editor called CHARM that could methylate and silence the prion gene in mouse brains and subsequently switch itself off. Additionally, Capelluti et al. developed an epi‐editor called EvoETR that knocked down Pcsk9 in the murine liver to reduce LDL levels. We aim to highlight the design principles underlying the design of these epi‐editors to inform future editor designs.
(A) CRISPR/Cas9 cuts DNA at specific sites, performing traditional gene editing. dCas9, a catalytically inactive version, binds to DNA without cutting and alters gene expression. (B) The Prnp gene in the brain was silenced by CHARM, which recruits DNMT3A to methylate the gene, delivered via CRISPR/dCas9 or ZFPs/TALEs, effectively reducing prion protein expression. (C) EvoETR targets the Pcsk9 gene in the liver using ZFPs fused to DNMT3A and DNMT3L to methylate and silence the gene, lowering LDL cholesterol levels without DNA breaks. (D) TALEs, ZFPs, and dCas9 are shown as interchangeable tools for epigenetic editing, capable of being fused with repressive domains to silence genes, offering flexible gene silencing strategies.</description><subject>Animals</subject><subject>CpG methylation</subject><subject>CRISPR</subject><subject>CRISPR-Cas Systems</subject><subject>DNA Methylation</subject><subject>Editors</subject><subject>Epigenesis, Genetic</subject><subject>Epigenetics</subject><subject>epigenome</subject><subject>gene editing</subject><subject>Gene Editing - methods</subject><subject>Gene expression</subject><subject>Gene Silencing</subject><subject>Genetic modification</subject><subject>Humans</subject><subject>Low density lipoprotein</subject><subject>Methyltransferase</subject><subject>Mice</subject><subject>Nucleotide sequence</subject><subject>Prions - genetics</subject><subject>Prions - metabolism</subject><subject>Proprotein Convertase 9 - genetics</subject><subject>Proprotein Convertase 9 - metabolism</subject><subject>Therapeutic applications</subject><issn>0265-9247</issn><issn>1521-1878</issn><issn>1521-1878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1Lw0AQQBdRbK1ePUrAi5fU2U2yH16klmoLFcWPc0h2Z8uWNFuzreK_N6VawYungeHNY3iEnFLoUwB2WToMfQYsBaCS75EuzRiNqRRyn3SB8SxWLBUdchTCHAAUZ-kh6SQqVTRVokuuh-PB031U1CYavfvRy9NV9NigdsH5OsKlm2GNK6ejlfdViKxvos0mCq7CWrt6dkwObFEFPPmePfJ6O3oZjuPpw91kOJjGmmWSx5Zn1FiFinM0mmutNFiQyqCCTKRSltQwaQRwgaaw1oqEFWVCS4McINFJj1xsvcvGv60xrPKFCxqrqqjRr0OeUJZIyFhKW_T8Dzr366Zuv2upVGSCK5m0VH9L6caH0KDNl41bFM1nTiHfpM03afNd2vbg7Fu7LhdodvhPyxZQW-CjjfP5jy6_mYyef-Vf8syDlg</recordid><startdate>202501</startdate><enddate>202501</enddate><creator>Pillai, Anirudh</creator><creator>Verma, Vasundhara</creator><creator>Galande, Sanjeev</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7251-1905</orcidid><orcidid>https://orcid.org/0000-0001-8395-3920</orcidid><orcidid>https://orcid.org/0009-0004-9876-0143</orcidid></search><sort><creationdate>202501</creationdate><title>CHARM and EvoETR: Precision epigenetic tools for gene silencing</title><author>Pillai, Anirudh ; Verma, Vasundhara ; Galande, Sanjeev</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2586-f651df9e966edc6cc9c0f089de9057488b1d28d7067edafff732ab31bde6003c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Animals</topic><topic>CpG methylation</topic><topic>CRISPR</topic><topic>CRISPR-Cas Systems</topic><topic>DNA Methylation</topic><topic>Editors</topic><topic>Epigenesis, Genetic</topic><topic>Epigenetics</topic><topic>epigenome</topic><topic>gene editing</topic><topic>Gene Editing - methods</topic><topic>Gene expression</topic><topic>Gene Silencing</topic><topic>Genetic modification</topic><topic>Humans</topic><topic>Low density lipoprotein</topic><topic>Methyltransferase</topic><topic>Mice</topic><topic>Nucleotide sequence</topic><topic>Prions - genetics</topic><topic>Prions - metabolism</topic><topic>Proprotein Convertase 9 - genetics</topic><topic>Proprotein Convertase 9 - metabolism</topic><topic>Therapeutic applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pillai, Anirudh</creatorcontrib><creatorcontrib>Verma, Vasundhara</creatorcontrib><creatorcontrib>Galande, Sanjeev</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>BioEssays</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pillai, Anirudh</au><au>Verma, Vasundhara</au><au>Galande, Sanjeev</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CHARM and EvoETR: Precision epigenetic tools for gene silencing</atitle><jtitle>BioEssays</jtitle><addtitle>Bioessays</addtitle><date>2025-01</date><risdate>2025</risdate><volume>47</volume><issue>1</issue><spage>e2400186</spage><epage>n/a</epage><pages>e2400186-n/a</pages><issn>0265-9247</issn><issn>1521-1878</issn><eissn>1521-1878</eissn><abstract>With the advent of gene editing technologies like CRISPR/Cas9, it has become possible to edit genomic regions of interest for research and therapeutic purposes. These technologies have also been adapted to alter gene expression without changing their DNA sequence, allowing epigenetic edits. While genetic editors make edits by cutting the genome at specified regions, epigenetic editors leverage the same targeting mechanism but act based on the epigenetic modifier fused to them, such as a methyltransferase. Here, we discuss two recently employed epigenetic editors (epi‐editors) that silenced target genes involved in disease to mitigate their effects. Neumann et al. reported the construction of an epigenetic editor called CHARM that could methylate and silence the prion gene in mouse brains and subsequently switch itself off. Additionally, Capelluti et al. developed an epi‐editor called EvoETR that knocked down Pcsk9 in the murine liver to reduce LDL levels. We aim to highlight the design principles underlying the design of these epi‐editors to inform future editor designs.
(A) CRISPR/Cas9 cuts DNA at specific sites, performing traditional gene editing. dCas9, a catalytically inactive version, binds to DNA without cutting and alters gene expression. (B) The Prnp gene in the brain was silenced by CHARM, which recruits DNMT3A to methylate the gene, delivered via CRISPR/dCas9 or ZFPs/TALEs, effectively reducing prion protein expression. (C) EvoETR targets the Pcsk9 gene in the liver using ZFPs fused to DNMT3A and DNMT3L to methylate and silence the gene, lowering LDL cholesterol levels without DNA breaks. (D) TALEs, ZFPs, and dCas9 are shown as interchangeable tools for epigenetic editing, capable of being fused with repressive domains to silence genes, offering flexible gene silencing strategies.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39491497</pmid><doi>10.1002/bies.202400186</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-7251-1905</orcidid><orcidid>https://orcid.org/0000-0001-8395-3920</orcidid><orcidid>https://orcid.org/0009-0004-9876-0143</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0265-9247 |
ispartof | BioEssays, 2025-01, Vol.47 (1), p.e2400186-n/a |
issn | 0265-9247 1521-1878 1521-1878 |
language | eng |
recordid | cdi_proquest_miscellaneous_3123805241 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Animals CpG methylation CRISPR CRISPR-Cas Systems DNA Methylation Editors Epigenesis, Genetic Epigenetics epigenome gene editing Gene Editing - methods Gene expression Gene Silencing Genetic modification Humans Low density lipoprotein Methyltransferase Mice Nucleotide sequence Prions - genetics Prions - metabolism Proprotein Convertase 9 - genetics Proprotein Convertase 9 - metabolism Therapeutic applications |
title | CHARM and EvoETR: Precision epigenetic tools for gene silencing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A42%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CHARM%20and%20EvoETR:%20Precision%20epigenetic%20tools%20for%20gene%20silencing&rft.jtitle=BioEssays&rft.au=Pillai,%20Anirudh&rft.date=2025-01&rft.volume=47&rft.issue=1&rft.spage=e2400186&rft.epage=n/a&rft.pages=e2400186-n/a&rft.issn=0265-9247&rft.eissn=1521-1878&rft_id=info:doi/10.1002/bies.202400186&rft_dat=%3Cproquest_cross%3E3123805241%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3147576983&rft_id=info:pmid/39491497&rfr_iscdi=true |