CHARM and EvoETR: Precision epigenetic tools for gene silencing

With the advent of gene editing technologies like CRISPR/Cas9, it has become possible to edit genomic regions of interest for research and therapeutic purposes. These technologies have also been adapted to alter gene expression without changing their DNA sequence, allowing epigenetic edits. While ge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BioEssays 2025-01, Vol.47 (1), p.e2400186-n/a
Hauptverfasser: Pillai, Anirudh, Verma, Vasundhara, Galande, Sanjeev
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page e2400186
container_title BioEssays
container_volume 47
creator Pillai, Anirudh
Verma, Vasundhara
Galande, Sanjeev
description With the advent of gene editing technologies like CRISPR/Cas9, it has become possible to edit genomic regions of interest for research and therapeutic purposes. These technologies have also been adapted to alter gene expression without changing their DNA sequence, allowing epigenetic edits. While genetic editors make edits by cutting the genome at specified regions, epigenetic editors leverage the same targeting mechanism but act based on the epigenetic modifier fused to them, such as a methyltransferase. Here, we discuss two recently employed epigenetic editors (epi‐editors) that silenced target genes involved in disease to mitigate their effects. Neumann et al. reported the construction of an epigenetic editor called CHARM that could methylate and silence the prion gene in mouse brains and subsequently switch itself off. Additionally, Capelluti et al. developed an epi‐editor called EvoETR that knocked down Pcsk9 in the murine liver to reduce LDL levels. We aim to highlight the design principles underlying the design of these epi‐editors to inform future editor designs. (A) CRISPR/Cas9 cuts DNA at specific sites, performing traditional gene editing. dCas9, a catalytically inactive version, binds to DNA without cutting and alters gene expression. (B) The Prnp gene in the brain was silenced by CHARM, which recruits DNMT3A to methylate the gene, delivered via CRISPR/dCas9 or ZFPs/TALEs, effectively reducing prion protein expression. (C) EvoETR targets the Pcsk9 gene in the liver using ZFPs fused to DNMT3A and DNMT3L to methylate and silence the gene, lowering LDL cholesterol levels without DNA breaks. (D) TALEs, ZFPs, and dCas9 are shown as interchangeable tools for epigenetic editing, capable of being fused with repressive domains to silence genes, offering flexible gene silencing strategies.
doi_str_mv 10.1002/bies.202400186
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3123805241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3123805241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2586-f651df9e966edc6cc9c0f089de9057488b1d28d7067edafff732ab31bde6003c3</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQQBdRbK1ePUrAi5fU2U2yH16klmoLFcWPc0h2Z8uWNFuzreK_N6VawYungeHNY3iEnFLoUwB2WToMfQYsBaCS75EuzRiNqRRyn3SB8SxWLBUdchTCHAAUZ-kh6SQqVTRVokuuh-PB031U1CYavfvRy9NV9NigdsH5OsKlm2GNK6ejlfdViKxvos0mCq7CWrt6dkwObFEFPPmePfJ6O3oZjuPpw91kOJjGmmWSx5Zn1FiFinM0mmutNFiQyqCCTKRSltQwaQRwgaaw1oqEFWVCS4McINFJj1xsvcvGv60xrPKFCxqrqqjRr0OeUJZIyFhKW_T8Dzr366Zuv2upVGSCK5m0VH9L6caH0KDNl41bFM1nTiHfpM03afNd2vbg7Fu7LhdodvhPyxZQW-CjjfP5jy6_mYyef-Vf8syDlg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3147576983</pqid></control><display><type>article</type><title>CHARM and EvoETR: Precision epigenetic tools for gene silencing</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Pillai, Anirudh ; Verma, Vasundhara ; Galande, Sanjeev</creator><creatorcontrib>Pillai, Anirudh ; Verma, Vasundhara ; Galande, Sanjeev</creatorcontrib><description>With the advent of gene editing technologies like CRISPR/Cas9, it has become possible to edit genomic regions of interest for research and therapeutic purposes. These technologies have also been adapted to alter gene expression without changing their DNA sequence, allowing epigenetic edits. While genetic editors make edits by cutting the genome at specified regions, epigenetic editors leverage the same targeting mechanism but act based on the epigenetic modifier fused to them, such as a methyltransferase. Here, we discuss two recently employed epigenetic editors (epi‐editors) that silenced target genes involved in disease to mitigate their effects. Neumann et al. reported the construction of an epigenetic editor called CHARM that could methylate and silence the prion gene in mouse brains and subsequently switch itself off. Additionally, Capelluti et al. developed an epi‐editor called EvoETR that knocked down Pcsk9 in the murine liver to reduce LDL levels. We aim to highlight the design principles underlying the design of these epi‐editors to inform future editor designs. (A) CRISPR/Cas9 cuts DNA at specific sites, performing traditional gene editing. dCas9, a catalytically inactive version, binds to DNA without cutting and alters gene expression. (B) The Prnp gene in the brain was silenced by CHARM, which recruits DNMT3A to methylate the gene, delivered via CRISPR/dCas9 or ZFPs/TALEs, effectively reducing prion protein expression. (C) EvoETR targets the Pcsk9 gene in the liver using ZFPs fused to DNMT3A and DNMT3L to methylate and silence the gene, lowering LDL cholesterol levels without DNA breaks. (D) TALEs, ZFPs, and dCas9 are shown as interchangeable tools for epigenetic editing, capable of being fused with repressive domains to silence genes, offering flexible gene silencing strategies.</description><identifier>ISSN: 0265-9247</identifier><identifier>ISSN: 1521-1878</identifier><identifier>EISSN: 1521-1878</identifier><identifier>DOI: 10.1002/bies.202400186</identifier><identifier>PMID: 39491497</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Animals ; CpG methylation ; CRISPR ; CRISPR-Cas Systems ; DNA Methylation ; Editors ; Epigenesis, Genetic ; Epigenetics ; epigenome ; gene editing ; Gene Editing - methods ; Gene expression ; Gene Silencing ; Genetic modification ; Humans ; Low density lipoprotein ; Methyltransferase ; Mice ; Nucleotide sequence ; Prions - genetics ; Prions - metabolism ; Proprotein Convertase 9 - genetics ; Proprotein Convertase 9 - metabolism ; Therapeutic applications</subject><ispartof>BioEssays, 2025-01, Vol.47 (1), p.e2400186-n/a</ispartof><rights>2024 Wiley Periodicals LLC.</rights><rights>2025 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2586-f651df9e966edc6cc9c0f089de9057488b1d28d7067edafff732ab31bde6003c3</cites><orcidid>0000-0002-7251-1905 ; 0000-0001-8395-3920 ; 0009-0004-9876-0143</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbies.202400186$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbies.202400186$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39491497$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pillai, Anirudh</creatorcontrib><creatorcontrib>Verma, Vasundhara</creatorcontrib><creatorcontrib>Galande, Sanjeev</creatorcontrib><title>CHARM and EvoETR: Precision epigenetic tools for gene silencing</title><title>BioEssays</title><addtitle>Bioessays</addtitle><description>With the advent of gene editing technologies like CRISPR/Cas9, it has become possible to edit genomic regions of interest for research and therapeutic purposes. These technologies have also been adapted to alter gene expression without changing their DNA sequence, allowing epigenetic edits. While genetic editors make edits by cutting the genome at specified regions, epigenetic editors leverage the same targeting mechanism but act based on the epigenetic modifier fused to them, such as a methyltransferase. Here, we discuss two recently employed epigenetic editors (epi‐editors) that silenced target genes involved in disease to mitigate their effects. Neumann et al. reported the construction of an epigenetic editor called CHARM that could methylate and silence the prion gene in mouse brains and subsequently switch itself off. Additionally, Capelluti et al. developed an epi‐editor called EvoETR that knocked down Pcsk9 in the murine liver to reduce LDL levels. We aim to highlight the design principles underlying the design of these epi‐editors to inform future editor designs. (A) CRISPR/Cas9 cuts DNA at specific sites, performing traditional gene editing. dCas9, a catalytically inactive version, binds to DNA without cutting and alters gene expression. (B) The Prnp gene in the brain was silenced by CHARM, which recruits DNMT3A to methylate the gene, delivered via CRISPR/dCas9 or ZFPs/TALEs, effectively reducing prion protein expression. (C) EvoETR targets the Pcsk9 gene in the liver using ZFPs fused to DNMT3A and DNMT3L to methylate and silence the gene, lowering LDL cholesterol levels without DNA breaks. (D) TALEs, ZFPs, and dCas9 are shown as interchangeable tools for epigenetic editing, capable of being fused with repressive domains to silence genes, offering flexible gene silencing strategies.</description><subject>Animals</subject><subject>CpG methylation</subject><subject>CRISPR</subject><subject>CRISPR-Cas Systems</subject><subject>DNA Methylation</subject><subject>Editors</subject><subject>Epigenesis, Genetic</subject><subject>Epigenetics</subject><subject>epigenome</subject><subject>gene editing</subject><subject>Gene Editing - methods</subject><subject>Gene expression</subject><subject>Gene Silencing</subject><subject>Genetic modification</subject><subject>Humans</subject><subject>Low density lipoprotein</subject><subject>Methyltransferase</subject><subject>Mice</subject><subject>Nucleotide sequence</subject><subject>Prions - genetics</subject><subject>Prions - metabolism</subject><subject>Proprotein Convertase 9 - genetics</subject><subject>Proprotein Convertase 9 - metabolism</subject><subject>Therapeutic applications</subject><issn>0265-9247</issn><issn>1521-1878</issn><issn>1521-1878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1Lw0AQQBdRbK1ePUrAi5fU2U2yH16klmoLFcWPc0h2Z8uWNFuzreK_N6VawYungeHNY3iEnFLoUwB2WToMfQYsBaCS75EuzRiNqRRyn3SB8SxWLBUdchTCHAAUZ-kh6SQqVTRVokuuh-PB031U1CYavfvRy9NV9NigdsH5OsKlm2GNK6ejlfdViKxvos0mCq7CWrt6dkwObFEFPPmePfJ6O3oZjuPpw91kOJjGmmWSx5Zn1FiFinM0mmutNFiQyqCCTKRSltQwaQRwgaaw1oqEFWVCS4McINFJj1xsvcvGv60xrPKFCxqrqqjRr0OeUJZIyFhKW_T8Dzr366Zuv2upVGSCK5m0VH9L6caH0KDNl41bFM1nTiHfpM03afNd2vbg7Fu7LhdodvhPyxZQW-CjjfP5jy6_mYyef-Vf8syDlg</recordid><startdate>202501</startdate><enddate>202501</enddate><creator>Pillai, Anirudh</creator><creator>Verma, Vasundhara</creator><creator>Galande, Sanjeev</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7251-1905</orcidid><orcidid>https://orcid.org/0000-0001-8395-3920</orcidid><orcidid>https://orcid.org/0009-0004-9876-0143</orcidid></search><sort><creationdate>202501</creationdate><title>CHARM and EvoETR: Precision epigenetic tools for gene silencing</title><author>Pillai, Anirudh ; Verma, Vasundhara ; Galande, Sanjeev</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2586-f651df9e966edc6cc9c0f089de9057488b1d28d7067edafff732ab31bde6003c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Animals</topic><topic>CpG methylation</topic><topic>CRISPR</topic><topic>CRISPR-Cas Systems</topic><topic>DNA Methylation</topic><topic>Editors</topic><topic>Epigenesis, Genetic</topic><topic>Epigenetics</topic><topic>epigenome</topic><topic>gene editing</topic><topic>Gene Editing - methods</topic><topic>Gene expression</topic><topic>Gene Silencing</topic><topic>Genetic modification</topic><topic>Humans</topic><topic>Low density lipoprotein</topic><topic>Methyltransferase</topic><topic>Mice</topic><topic>Nucleotide sequence</topic><topic>Prions - genetics</topic><topic>Prions - metabolism</topic><topic>Proprotein Convertase 9 - genetics</topic><topic>Proprotein Convertase 9 - metabolism</topic><topic>Therapeutic applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pillai, Anirudh</creatorcontrib><creatorcontrib>Verma, Vasundhara</creatorcontrib><creatorcontrib>Galande, Sanjeev</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>BioEssays</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pillai, Anirudh</au><au>Verma, Vasundhara</au><au>Galande, Sanjeev</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CHARM and EvoETR: Precision epigenetic tools for gene silencing</atitle><jtitle>BioEssays</jtitle><addtitle>Bioessays</addtitle><date>2025-01</date><risdate>2025</risdate><volume>47</volume><issue>1</issue><spage>e2400186</spage><epage>n/a</epage><pages>e2400186-n/a</pages><issn>0265-9247</issn><issn>1521-1878</issn><eissn>1521-1878</eissn><abstract>With the advent of gene editing technologies like CRISPR/Cas9, it has become possible to edit genomic regions of interest for research and therapeutic purposes. These technologies have also been adapted to alter gene expression without changing their DNA sequence, allowing epigenetic edits. While genetic editors make edits by cutting the genome at specified regions, epigenetic editors leverage the same targeting mechanism but act based on the epigenetic modifier fused to them, such as a methyltransferase. Here, we discuss two recently employed epigenetic editors (epi‐editors) that silenced target genes involved in disease to mitigate their effects. Neumann et al. reported the construction of an epigenetic editor called CHARM that could methylate and silence the prion gene in mouse brains and subsequently switch itself off. Additionally, Capelluti et al. developed an epi‐editor called EvoETR that knocked down Pcsk9 in the murine liver to reduce LDL levels. We aim to highlight the design principles underlying the design of these epi‐editors to inform future editor designs. (A) CRISPR/Cas9 cuts DNA at specific sites, performing traditional gene editing. dCas9, a catalytically inactive version, binds to DNA without cutting and alters gene expression. (B) The Prnp gene in the brain was silenced by CHARM, which recruits DNMT3A to methylate the gene, delivered via CRISPR/dCas9 or ZFPs/TALEs, effectively reducing prion protein expression. (C) EvoETR targets the Pcsk9 gene in the liver using ZFPs fused to DNMT3A and DNMT3L to methylate and silence the gene, lowering LDL cholesterol levels without DNA breaks. (D) TALEs, ZFPs, and dCas9 are shown as interchangeable tools for epigenetic editing, capable of being fused with repressive domains to silence genes, offering flexible gene silencing strategies.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39491497</pmid><doi>10.1002/bies.202400186</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-7251-1905</orcidid><orcidid>https://orcid.org/0000-0001-8395-3920</orcidid><orcidid>https://orcid.org/0009-0004-9876-0143</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0265-9247
ispartof BioEssays, 2025-01, Vol.47 (1), p.e2400186-n/a
issn 0265-9247
1521-1878
1521-1878
language eng
recordid cdi_proquest_miscellaneous_3123805241
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
CpG methylation
CRISPR
CRISPR-Cas Systems
DNA Methylation
Editors
Epigenesis, Genetic
Epigenetics
epigenome
gene editing
Gene Editing - methods
Gene expression
Gene Silencing
Genetic modification
Humans
Low density lipoprotein
Methyltransferase
Mice
Nucleotide sequence
Prions - genetics
Prions - metabolism
Proprotein Convertase 9 - genetics
Proprotein Convertase 9 - metabolism
Therapeutic applications
title CHARM and EvoETR: Precision epigenetic tools for gene silencing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A42%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CHARM%20and%20EvoETR:%20Precision%20epigenetic%20tools%20for%20gene%20silencing&rft.jtitle=BioEssays&rft.au=Pillai,%20Anirudh&rft.date=2025-01&rft.volume=47&rft.issue=1&rft.spage=e2400186&rft.epage=n/a&rft.pages=e2400186-n/a&rft.issn=0265-9247&rft.eissn=1521-1878&rft_id=info:doi/10.1002/bies.202400186&rft_dat=%3Cproquest_cross%3E3123805241%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3147576983&rft_id=info:pmid/39491497&rfr_iscdi=true