Molecular tweaking by generative cheminformatics and ligand–protein structures for rational drug discovery

The importance of structure-guided-drug design through collaboration of synthetic and medicinal chemistry with structural biology and artificial intelligence is presented as an accelerated drug discovery platform. [Display omitted] The purpose of this review is two-fold: (1) to summarize artificial...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioorganic chemistry 2024-12, Vol.153, p.107920, Article 107920
1. Verfasser: Nangia, Ashwini K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 107920
container_title Bioorganic chemistry
container_volume 153
creator Nangia, Ashwini K.
description The importance of structure-guided-drug design through collaboration of synthetic and medicinal chemistry with structural biology and artificial intelligence is presented as an accelerated drug discovery platform. [Display omitted] The purpose of this review is two-fold: (1) to summarize artificial intelligence and machine learning approaches and document the role of ligand–protein structures in directing drug discovery; (2) to present examples of drugs from the recent literature (past decade) of case studies where such strategies have been applied to accelerate the discovery pipeline. Compared to 50 years ago when drug discovery was largely a synthetic chemist driven research exercise, today a holistic approach needs to be adopted with seamless integration between synthetic and medicinal chemistry, supramolecular complexes, computations, artificial intelligence, machine learning, structural biology, chemical biology, diffraction analytical tools, drugs databases, and pharmacology. The urgency for an integrated and collaborative platform to accelerate drug discovery in an academic setting is emphasized.
doi_str_mv 10.1016/j.bioorg.2024.107920
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3123803217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045206824008253</els_id><sourcerecordid>3123803217</sourcerecordid><originalsourceid>FETCH-LOGICAL-c241t-f082871d5abb03699ef5578c3d7aff664a8079acba3863fa69830b28b172c33f3</originalsourceid><addsrcrecordid>eNp9kM1O3DAQxy1UBMvHG6DKx16yHdvZxLkgVYiPSiAucLYcZxy8TWKwk632xjvwhjwJXoX2yGk01u_vmfkRcsZgyYAVP9fL2nkf2iUHnqensuKwRxYMKsg44_CNLADyVcahkIfkKMY1AGN5WRyQQ1HlsgIJC9Ld-Q7N1OlAx7-o_7ihpfWWtjhg0KPbIDVP2LvB-tCn3kSqh4Z2rk3l_fXtOfgR3UDjGCYzTgEjTSTdRf2gO9qEqaWNi8ZvMGxPyL7VXcTTz3pMHq8uHy5ustv7698Xv24zw3M2ZhYklyVrVrquQRRVhXa1KqURTamtLYpcy3StNrUWshBWF5UUUHNZs5IbIaw4Jj_mf9N6LxPGUfVpBew6PaCfohKMCwmCszKh-Yya4GMMaNVzcL0OW8VA7TyrtZo9q51nNXtOse-fE6a6x-Z_6J_YBJzPAKY7Nw6DisbhYLBxAc2oGu--nvABLOeTpg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123803217</pqid></control><display><type>article</type><title>Molecular tweaking by generative cheminformatics and ligand–protein structures for rational drug discovery</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Nangia, Ashwini K.</creator><creatorcontrib>Nangia, Ashwini K.</creatorcontrib><description>The importance of structure-guided-drug design through collaboration of synthetic and medicinal chemistry with structural biology and artificial intelligence is presented as an accelerated drug discovery platform. [Display omitted] The purpose of this review is two-fold: (1) to summarize artificial intelligence and machine learning approaches and document the role of ligand–protein structures in directing drug discovery; (2) to present examples of drugs from the recent literature (past decade) of case studies where such strategies have been applied to accelerate the discovery pipeline. Compared to 50 years ago when drug discovery was largely a synthetic chemist driven research exercise, today a holistic approach needs to be adopted with seamless integration between synthetic and medicinal chemistry, supramolecular complexes, computations, artificial intelligence, machine learning, structural biology, chemical biology, diffraction analytical tools, drugs databases, and pharmacology. The urgency for an integrated and collaborative platform to accelerate drug discovery in an academic setting is emphasized.</description><identifier>ISSN: 0045-2068</identifier><identifier>ISSN: 1090-2120</identifier><identifier>EISSN: 1090-2120</identifier><identifier>DOI: 10.1016/j.bioorg.2024.107920</identifier><identifier>PMID: 39489080</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Artificial Intelligence ; Chemical synthesis ; Cheminformatics - methods ; Crystal structure ; Drug Discovery ; Humans ; Ligands ; Ligand–protein ; Machine Learning ; Molecular Structure ; Natural product ; Proteins - antagonists &amp; inhibitors ; Proteins - chemistry ; Proteins - metabolism</subject><ispartof>Bioorganic chemistry, 2024-12, Vol.153, p.107920, Article 107920</ispartof><rights>2024 Elsevier Inc.</rights><rights>Copyright © 2024 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c241t-f082871d5abb03699ef5578c3d7aff664a8079acba3863fa69830b28b172c33f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bioorg.2024.107920$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39489080$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nangia, Ashwini K.</creatorcontrib><title>Molecular tweaking by generative cheminformatics and ligand–protein structures for rational drug discovery</title><title>Bioorganic chemistry</title><addtitle>Bioorg Chem</addtitle><description>The importance of structure-guided-drug design through collaboration of synthetic and medicinal chemistry with structural biology and artificial intelligence is presented as an accelerated drug discovery platform. [Display omitted] The purpose of this review is two-fold: (1) to summarize artificial intelligence and machine learning approaches and document the role of ligand–protein structures in directing drug discovery; (2) to present examples of drugs from the recent literature (past decade) of case studies where such strategies have been applied to accelerate the discovery pipeline. Compared to 50 years ago when drug discovery was largely a synthetic chemist driven research exercise, today a holistic approach needs to be adopted with seamless integration between synthetic and medicinal chemistry, supramolecular complexes, computations, artificial intelligence, machine learning, structural biology, chemical biology, diffraction analytical tools, drugs databases, and pharmacology. The urgency for an integrated and collaborative platform to accelerate drug discovery in an academic setting is emphasized.</description><subject>Artificial Intelligence</subject><subject>Chemical synthesis</subject><subject>Cheminformatics - methods</subject><subject>Crystal structure</subject><subject>Drug Discovery</subject><subject>Humans</subject><subject>Ligands</subject><subject>Ligand–protein</subject><subject>Machine Learning</subject><subject>Molecular Structure</subject><subject>Natural product</subject><subject>Proteins - antagonists &amp; inhibitors</subject><subject>Proteins - chemistry</subject><subject>Proteins - metabolism</subject><issn>0045-2068</issn><issn>1090-2120</issn><issn>1090-2120</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kM1O3DAQxy1UBMvHG6DKx16yHdvZxLkgVYiPSiAucLYcZxy8TWKwk632xjvwhjwJXoX2yGk01u_vmfkRcsZgyYAVP9fL2nkf2iUHnqensuKwRxYMKsg44_CNLADyVcahkIfkKMY1AGN5WRyQQ1HlsgIJC9Ld-Q7N1OlAx7-o_7ihpfWWtjhg0KPbIDVP2LvB-tCn3kSqh4Z2rk3l_fXtOfgR3UDjGCYzTgEjTSTdRf2gO9qEqaWNi8ZvMGxPyL7VXcTTz3pMHq8uHy5ustv7698Xv24zw3M2ZhYklyVrVrquQRRVhXa1KqURTamtLYpcy3StNrUWshBWF5UUUHNZs5IbIaw4Jj_mf9N6LxPGUfVpBew6PaCfohKMCwmCszKh-Yya4GMMaNVzcL0OW8VA7TyrtZo9q51nNXtOse-fE6a6x-Z_6J_YBJzPAKY7Nw6DisbhYLBxAc2oGu--nvABLOeTpg</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Nangia, Ashwini K.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202412</creationdate><title>Molecular tweaking by generative cheminformatics and ligand–protein structures for rational drug discovery</title><author>Nangia, Ashwini K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c241t-f082871d5abb03699ef5578c3d7aff664a8079acba3863fa69830b28b172c33f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Intelligence</topic><topic>Chemical synthesis</topic><topic>Cheminformatics - methods</topic><topic>Crystal structure</topic><topic>Drug Discovery</topic><topic>Humans</topic><topic>Ligands</topic><topic>Ligand–protein</topic><topic>Machine Learning</topic><topic>Molecular Structure</topic><topic>Natural product</topic><topic>Proteins - antagonists &amp; inhibitors</topic><topic>Proteins - chemistry</topic><topic>Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nangia, Ashwini K.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Bioorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nangia, Ashwini K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular tweaking by generative cheminformatics and ligand–protein structures for rational drug discovery</atitle><jtitle>Bioorganic chemistry</jtitle><addtitle>Bioorg Chem</addtitle><date>2024-12</date><risdate>2024</risdate><volume>153</volume><spage>107920</spage><pages>107920-</pages><artnum>107920</artnum><issn>0045-2068</issn><issn>1090-2120</issn><eissn>1090-2120</eissn><abstract>The importance of structure-guided-drug design through collaboration of synthetic and medicinal chemistry with structural biology and artificial intelligence is presented as an accelerated drug discovery platform. [Display omitted] The purpose of this review is two-fold: (1) to summarize artificial intelligence and machine learning approaches and document the role of ligand–protein structures in directing drug discovery; (2) to present examples of drugs from the recent literature (past decade) of case studies where such strategies have been applied to accelerate the discovery pipeline. Compared to 50 years ago when drug discovery was largely a synthetic chemist driven research exercise, today a holistic approach needs to be adopted with seamless integration between synthetic and medicinal chemistry, supramolecular complexes, computations, artificial intelligence, machine learning, structural biology, chemical biology, diffraction analytical tools, drugs databases, and pharmacology. The urgency for an integrated and collaborative platform to accelerate drug discovery in an academic setting is emphasized.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>39489080</pmid><doi>10.1016/j.bioorg.2024.107920</doi></addata></record>
fulltext fulltext
identifier ISSN: 0045-2068
ispartof Bioorganic chemistry, 2024-12, Vol.153, p.107920, Article 107920
issn 0045-2068
1090-2120
1090-2120
language eng
recordid cdi_proquest_miscellaneous_3123803217
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Artificial Intelligence
Chemical synthesis
Cheminformatics - methods
Crystal structure
Drug Discovery
Humans
Ligands
Ligand–protein
Machine Learning
Molecular Structure
Natural product
Proteins - antagonists & inhibitors
Proteins - chemistry
Proteins - metabolism
title Molecular tweaking by generative cheminformatics and ligand–protein structures for rational drug discovery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A33%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20tweaking%20by%20generative%20cheminformatics%20and%20ligand%E2%80%93protein%20structures%20for%20rational%20drug%20discovery&rft.jtitle=Bioorganic%20chemistry&rft.au=Nangia,%20Ashwini%20K.&rft.date=2024-12&rft.volume=153&rft.spage=107920&rft.pages=107920-&rft.artnum=107920&rft.issn=0045-2068&rft.eissn=1090-2120&rft_id=info:doi/10.1016/j.bioorg.2024.107920&rft_dat=%3Cproquest_cross%3E3123803217%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3123803217&rft_id=info:pmid/39489080&rft_els_id=S0045206824008253&rfr_iscdi=true