Molecular tweaking by generative cheminformatics and ligand–protein structures for rational drug discovery
The importance of structure-guided-drug design through collaboration of synthetic and medicinal chemistry with structural biology and artificial intelligence is presented as an accelerated drug discovery platform. [Display omitted] The purpose of this review is two-fold: (1) to summarize artificial...
Gespeichert in:
Veröffentlicht in: | Bioorganic chemistry 2024-12, Vol.153, p.107920, Article 107920 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 107920 |
container_title | Bioorganic chemistry |
container_volume | 153 |
creator | Nangia, Ashwini K. |
description | The importance of structure-guided-drug design through collaboration of synthetic and medicinal chemistry with structural biology and artificial intelligence is presented as an accelerated drug discovery platform.
[Display omitted]
The purpose of this review is two-fold: (1) to summarize artificial intelligence and machine learning approaches and document the role of ligand–protein structures in directing drug discovery; (2) to present examples of drugs from the recent literature (past decade) of case studies where such strategies have been applied to accelerate the discovery pipeline. Compared to 50 years ago when drug discovery was largely a synthetic chemist driven research exercise, today a holistic approach needs to be adopted with seamless integration between synthetic and medicinal chemistry, supramolecular complexes, computations, artificial intelligence, machine learning, structural biology, chemical biology, diffraction analytical tools, drugs databases, and pharmacology. The urgency for an integrated and collaborative platform to accelerate drug discovery in an academic setting is emphasized. |
doi_str_mv | 10.1016/j.bioorg.2024.107920 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3123803217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045206824008253</els_id><sourcerecordid>3123803217</sourcerecordid><originalsourceid>FETCH-LOGICAL-c241t-f082871d5abb03699ef5578c3d7aff664a8079acba3863fa69830b28b172c33f3</originalsourceid><addsrcrecordid>eNp9kM1O3DAQxy1UBMvHG6DKx16yHdvZxLkgVYiPSiAucLYcZxy8TWKwk632xjvwhjwJXoX2yGk01u_vmfkRcsZgyYAVP9fL2nkf2iUHnqensuKwRxYMKsg44_CNLADyVcahkIfkKMY1AGN5WRyQQ1HlsgIJC9Ld-Q7N1OlAx7-o_7ihpfWWtjhg0KPbIDVP2LvB-tCn3kSqh4Z2rk3l_fXtOfgR3UDjGCYzTgEjTSTdRf2gO9qEqaWNi8ZvMGxPyL7VXcTTz3pMHq8uHy5ustv7698Xv24zw3M2ZhYklyVrVrquQRRVhXa1KqURTamtLYpcy3StNrUWshBWF5UUUHNZs5IbIaw4Jj_mf9N6LxPGUfVpBew6PaCfohKMCwmCszKh-Yya4GMMaNVzcL0OW8VA7TyrtZo9q51nNXtOse-fE6a6x-Z_6J_YBJzPAKY7Nw6DisbhYLBxAc2oGu--nvABLOeTpg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123803217</pqid></control><display><type>article</type><title>Molecular tweaking by generative cheminformatics and ligand–protein structures for rational drug discovery</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Nangia, Ashwini K.</creator><creatorcontrib>Nangia, Ashwini K.</creatorcontrib><description>The importance of structure-guided-drug design through collaboration of synthetic and medicinal chemistry with structural biology and artificial intelligence is presented as an accelerated drug discovery platform.
[Display omitted]
The purpose of this review is two-fold: (1) to summarize artificial intelligence and machine learning approaches and document the role of ligand–protein structures in directing drug discovery; (2) to present examples of drugs from the recent literature (past decade) of case studies where such strategies have been applied to accelerate the discovery pipeline. Compared to 50 years ago when drug discovery was largely a synthetic chemist driven research exercise, today a holistic approach needs to be adopted with seamless integration between synthetic and medicinal chemistry, supramolecular complexes, computations, artificial intelligence, machine learning, structural biology, chemical biology, diffraction analytical tools, drugs databases, and pharmacology. The urgency for an integrated and collaborative platform to accelerate drug discovery in an academic setting is emphasized.</description><identifier>ISSN: 0045-2068</identifier><identifier>ISSN: 1090-2120</identifier><identifier>EISSN: 1090-2120</identifier><identifier>DOI: 10.1016/j.bioorg.2024.107920</identifier><identifier>PMID: 39489080</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Artificial Intelligence ; Chemical synthesis ; Cheminformatics - methods ; Crystal structure ; Drug Discovery ; Humans ; Ligands ; Ligand–protein ; Machine Learning ; Molecular Structure ; Natural product ; Proteins - antagonists & inhibitors ; Proteins - chemistry ; Proteins - metabolism</subject><ispartof>Bioorganic chemistry, 2024-12, Vol.153, p.107920, Article 107920</ispartof><rights>2024 Elsevier Inc.</rights><rights>Copyright © 2024 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c241t-f082871d5abb03699ef5578c3d7aff664a8079acba3863fa69830b28b172c33f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bioorg.2024.107920$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39489080$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nangia, Ashwini K.</creatorcontrib><title>Molecular tweaking by generative cheminformatics and ligand–protein structures for rational drug discovery</title><title>Bioorganic chemistry</title><addtitle>Bioorg Chem</addtitle><description>The importance of structure-guided-drug design through collaboration of synthetic and medicinal chemistry with structural biology and artificial intelligence is presented as an accelerated drug discovery platform.
[Display omitted]
The purpose of this review is two-fold: (1) to summarize artificial intelligence and machine learning approaches and document the role of ligand–protein structures in directing drug discovery; (2) to present examples of drugs from the recent literature (past decade) of case studies where such strategies have been applied to accelerate the discovery pipeline. Compared to 50 years ago when drug discovery was largely a synthetic chemist driven research exercise, today a holistic approach needs to be adopted with seamless integration between synthetic and medicinal chemistry, supramolecular complexes, computations, artificial intelligence, machine learning, structural biology, chemical biology, diffraction analytical tools, drugs databases, and pharmacology. The urgency for an integrated and collaborative platform to accelerate drug discovery in an academic setting is emphasized.</description><subject>Artificial Intelligence</subject><subject>Chemical synthesis</subject><subject>Cheminformatics - methods</subject><subject>Crystal structure</subject><subject>Drug Discovery</subject><subject>Humans</subject><subject>Ligands</subject><subject>Ligand–protein</subject><subject>Machine Learning</subject><subject>Molecular Structure</subject><subject>Natural product</subject><subject>Proteins - antagonists & inhibitors</subject><subject>Proteins - chemistry</subject><subject>Proteins - metabolism</subject><issn>0045-2068</issn><issn>1090-2120</issn><issn>1090-2120</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kM1O3DAQxy1UBMvHG6DKx16yHdvZxLkgVYiPSiAucLYcZxy8TWKwk632xjvwhjwJXoX2yGk01u_vmfkRcsZgyYAVP9fL2nkf2iUHnqensuKwRxYMKsg44_CNLADyVcahkIfkKMY1AGN5WRyQQ1HlsgIJC9Ld-Q7N1OlAx7-o_7ihpfWWtjhg0KPbIDVP2LvB-tCn3kSqh4Z2rk3l_fXtOfgR3UDjGCYzTgEjTSTdRf2gO9qEqaWNi8ZvMGxPyL7VXcTTz3pMHq8uHy5ustv7698Xv24zw3M2ZhYklyVrVrquQRRVhXa1KqURTamtLYpcy3StNrUWshBWF5UUUHNZs5IbIaw4Jj_mf9N6LxPGUfVpBew6PaCfohKMCwmCszKh-Yya4GMMaNVzcL0OW8VA7TyrtZo9q51nNXtOse-fE6a6x-Z_6J_YBJzPAKY7Nw6DisbhYLBxAc2oGu--nvABLOeTpg</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Nangia, Ashwini K.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202412</creationdate><title>Molecular tweaking by generative cheminformatics and ligand–protein structures for rational drug discovery</title><author>Nangia, Ashwini K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c241t-f082871d5abb03699ef5578c3d7aff664a8079acba3863fa69830b28b172c33f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Intelligence</topic><topic>Chemical synthesis</topic><topic>Cheminformatics - methods</topic><topic>Crystal structure</topic><topic>Drug Discovery</topic><topic>Humans</topic><topic>Ligands</topic><topic>Ligand–protein</topic><topic>Machine Learning</topic><topic>Molecular Structure</topic><topic>Natural product</topic><topic>Proteins - antagonists & inhibitors</topic><topic>Proteins - chemistry</topic><topic>Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nangia, Ashwini K.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Bioorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nangia, Ashwini K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular tweaking by generative cheminformatics and ligand–protein structures for rational drug discovery</atitle><jtitle>Bioorganic chemistry</jtitle><addtitle>Bioorg Chem</addtitle><date>2024-12</date><risdate>2024</risdate><volume>153</volume><spage>107920</spage><pages>107920-</pages><artnum>107920</artnum><issn>0045-2068</issn><issn>1090-2120</issn><eissn>1090-2120</eissn><abstract>The importance of structure-guided-drug design through collaboration of synthetic and medicinal chemistry with structural biology and artificial intelligence is presented as an accelerated drug discovery platform.
[Display omitted]
The purpose of this review is two-fold: (1) to summarize artificial intelligence and machine learning approaches and document the role of ligand–protein structures in directing drug discovery; (2) to present examples of drugs from the recent literature (past decade) of case studies where such strategies have been applied to accelerate the discovery pipeline. Compared to 50 years ago when drug discovery was largely a synthetic chemist driven research exercise, today a holistic approach needs to be adopted with seamless integration between synthetic and medicinal chemistry, supramolecular complexes, computations, artificial intelligence, machine learning, structural biology, chemical biology, diffraction analytical tools, drugs databases, and pharmacology. The urgency for an integrated and collaborative platform to accelerate drug discovery in an academic setting is emphasized.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>39489080</pmid><doi>10.1016/j.bioorg.2024.107920</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-2068 |
ispartof | Bioorganic chemistry, 2024-12, Vol.153, p.107920, Article 107920 |
issn | 0045-2068 1090-2120 1090-2120 |
language | eng |
recordid | cdi_proquest_miscellaneous_3123803217 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Artificial Intelligence Chemical synthesis Cheminformatics - methods Crystal structure Drug Discovery Humans Ligands Ligand–protein Machine Learning Molecular Structure Natural product Proteins - antagonists & inhibitors Proteins - chemistry Proteins - metabolism |
title | Molecular tweaking by generative cheminformatics and ligand–protein structures for rational drug discovery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A33%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20tweaking%20by%20generative%20cheminformatics%20and%20ligand%E2%80%93protein%20structures%20for%20rational%20drug%20discovery&rft.jtitle=Bioorganic%20chemistry&rft.au=Nangia,%20Ashwini%20K.&rft.date=2024-12&rft.volume=153&rft.spage=107920&rft.pages=107920-&rft.artnum=107920&rft.issn=0045-2068&rft.eissn=1090-2120&rft_id=info:doi/10.1016/j.bioorg.2024.107920&rft_dat=%3Cproquest_cross%3E3123803217%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3123803217&rft_id=info:pmid/39489080&rft_els_id=S0045206824008253&rfr_iscdi=true |