Threonine-rich carboxyl-terminal extension drives aggregation of stalled polypeptides

Ribosomes translating damaged mRNAs may stall and prematurely split into their large and small subunits. The split large ribosome subunits can continue elongating stalled polypeptides. In yeast, this mRNA-independent translation appends the C-terminal alanine/threonine tail (CAT tail) to stalled pol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular cell 2024-11, Vol.84 (22), p.4334-4349.e7
Hauptverfasser: Chang, Weili Denyse, Yoon, Mi-Jeong, Yeo, Kian Hua, Choe, Young-Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4349.e7
container_issue 22
container_start_page 4334
container_title Molecular cell
container_volume 84
creator Chang, Weili Denyse
Yoon, Mi-Jeong
Yeo, Kian Hua
Choe, Young-Jun
description Ribosomes translating damaged mRNAs may stall and prematurely split into their large and small subunits. The split large ribosome subunits can continue elongating stalled polypeptides. In yeast, this mRNA-independent translation appends the C-terminal alanine/threonine tail (CAT tail) to stalled polypeptides. If not degraded by the ribosome-associated quality control (RQC), CAT-tailed stalled polypeptides form aggregates. How the CAT tail, a low-complexity region composed of alanine and threonine, drives protein aggregation remains unknown. In this study, we demonstrate that C-terminal polythreonine or threonine-enriched tails form detergent-resistant aggregates. These aggregates exhibit a robust seeding effect on shorter tails with lower threonine content, elucidating how heterogeneous CAT tails co-aggregate. Polythreonine aggregates sequester molecular chaperones, disturbing proteostasis and provoking the heat shock response. Furthermore, polythreonine cross-seeds detergent-resistant polyserine aggregation, indicating structural similarity between the two aggregates. This study identifies polythreonine and polyserine as a distinct group of aggregation-prone protein motifs. [Display omitted] •tRNA levels influence the composition of C-terminal extensions of stalled polypeptides•Threonine-rich extensions form detergent-insoluble aggregates•Threonine-based protein aggregates display robust seeding effects•Polythreonine aggregates sequester polyserine When ribosomes stall during translation of defective mRNAs, the resulting incomplete polypeptides form detergent-insoluble aggregates. Chang & Yoon et al. demonstrate that threonine residues drive this aberrant protein aggregation in Saccharomyces cerevisiae. This study uncovers a distinctive protein aggregation mechanism.
doi_str_mv 10.1016/j.molcel.2024.10.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3123550680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1097276524008347</els_id><sourcerecordid>3123550680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-47435e361dfd97f8acd6cc8d5de3ad2e712851961d46b94688e53cc2f0fec3233</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqXwBwhlySbFryTOBglVvKRKbNq15dqT1pUTBzut2r8nUQtLVjO6c2eu5iB0T_CUYJI_bae1dxrclGLKe2mKCblAY4LLIuUk55fnnhZ5NkI3MW4xJjwT5TUasZILQQkdo-ViE8A3toE0WL1JtAorfzi6tINQ20a5BA4dNNH6JjHB7iEmar0OsFbdIPkqiZ1yDkzSendsoe2sgXiLrirlItyd6wQt314Xs490_vX-OXuZp5qKokt5wVkGLCemMmVRCaVNrrUwmQGmDIWCUJGRsp_zfFXyXAjImNa0whVoRhmboMfT3Tb47x3ETtY29kycasDvomSEsizDucC9lZ-sOvgYA1SyDbZW4SgJlgNQuZUnoHIAOqg90H7t4ZywW9Vg_pZ-CfaG55MB-j_3FoKM2kKjwdgAupPG2_8TfgBOq4qP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123550680</pqid></control><display><type>article</type><title>Threonine-rich carboxyl-terminal extension drives aggregation of stalled polypeptides</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Chang, Weili Denyse ; Yoon, Mi-Jeong ; Yeo, Kian Hua ; Choe, Young-Jun</creator><creatorcontrib>Chang, Weili Denyse ; Yoon, Mi-Jeong ; Yeo, Kian Hua ; Choe, Young-Jun</creatorcontrib><description>Ribosomes translating damaged mRNAs may stall and prematurely split into their large and small subunits. The split large ribosome subunits can continue elongating stalled polypeptides. In yeast, this mRNA-independent translation appends the C-terminal alanine/threonine tail (CAT tail) to stalled polypeptides. If not degraded by the ribosome-associated quality control (RQC), CAT-tailed stalled polypeptides form aggregates. How the CAT tail, a low-complexity region composed of alanine and threonine, drives protein aggregation remains unknown. In this study, we demonstrate that C-terminal polythreonine or threonine-enriched tails form detergent-resistant aggregates. These aggregates exhibit a robust seeding effect on shorter tails with lower threonine content, elucidating how heterogeneous CAT tails co-aggregate. Polythreonine aggregates sequester molecular chaperones, disturbing proteostasis and provoking the heat shock response. Furthermore, polythreonine cross-seeds detergent-resistant polyserine aggregation, indicating structural similarity between the two aggregates. This study identifies polythreonine and polyserine as a distinct group of aggregation-prone protein motifs. [Display omitted] •tRNA levels influence the composition of C-terminal extensions of stalled polypeptides•Threonine-rich extensions form detergent-insoluble aggregates•Threonine-based protein aggregates display robust seeding effects•Polythreonine aggregates sequester polyserine When ribosomes stall during translation of defective mRNAs, the resulting incomplete polypeptides form detergent-insoluble aggregates. Chang &amp; Yoon et al. demonstrate that threonine residues drive this aberrant protein aggregation in Saccharomyces cerevisiae. This study uncovers a distinctive protein aggregation mechanism.</description><identifier>ISSN: 1097-2765</identifier><identifier>ISSN: 1097-4164</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2024.10.011</identifier><identifier>PMID: 39488212</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Alanine - chemistry ; Alanine - genetics ; Alanine - metabolism ; CAT tail ; chaperone ; Heat-Shock Response ; molecular chaperone ; Molecular Chaperones - chemistry ; Molecular Chaperones - genetics ; Molecular Chaperones - metabolism ; Peptides - chemistry ; Peptides - genetics ; Peptides - metabolism ; polyQ ; polyserine ; polyserine aggregation ; polythreonine ; polythreonine aggregation ; Protein Aggregates ; Protein Biosynthesis ; Proteostasis ; ribosome stalling ; Ribosomes - genetics ; Ribosomes - metabolism ; RNA-Binding Proteins ; RQC ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - chemistry ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Threonine - metabolism</subject><ispartof>Molecular cell, 2024-11, Vol.84 (22), p.4334-4349.e7</ispartof><rights>2024 The Author(s)</rights><rights>Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-47435e361dfd97f8acd6cc8d5de3ad2e712851961d46b94688e53cc2f0fec3233</cites><orcidid>0000-0003-3062-057X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.molcel.2024.10.011$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39488212$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chang, Weili Denyse</creatorcontrib><creatorcontrib>Yoon, Mi-Jeong</creatorcontrib><creatorcontrib>Yeo, Kian Hua</creatorcontrib><creatorcontrib>Choe, Young-Jun</creatorcontrib><title>Threonine-rich carboxyl-terminal extension drives aggregation of stalled polypeptides</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>Ribosomes translating damaged mRNAs may stall and prematurely split into their large and small subunits. The split large ribosome subunits can continue elongating stalled polypeptides. In yeast, this mRNA-independent translation appends the C-terminal alanine/threonine tail (CAT tail) to stalled polypeptides. If not degraded by the ribosome-associated quality control (RQC), CAT-tailed stalled polypeptides form aggregates. How the CAT tail, a low-complexity region composed of alanine and threonine, drives protein aggregation remains unknown. In this study, we demonstrate that C-terminal polythreonine or threonine-enriched tails form detergent-resistant aggregates. These aggregates exhibit a robust seeding effect on shorter tails with lower threonine content, elucidating how heterogeneous CAT tails co-aggregate. Polythreonine aggregates sequester molecular chaperones, disturbing proteostasis and provoking the heat shock response. Furthermore, polythreonine cross-seeds detergent-resistant polyserine aggregation, indicating structural similarity between the two aggregates. This study identifies polythreonine and polyserine as a distinct group of aggregation-prone protein motifs. [Display omitted] •tRNA levels influence the composition of C-terminal extensions of stalled polypeptides•Threonine-rich extensions form detergent-insoluble aggregates•Threonine-based protein aggregates display robust seeding effects•Polythreonine aggregates sequester polyserine When ribosomes stall during translation of defective mRNAs, the resulting incomplete polypeptides form detergent-insoluble aggregates. Chang &amp; Yoon et al. demonstrate that threonine residues drive this aberrant protein aggregation in Saccharomyces cerevisiae. This study uncovers a distinctive protein aggregation mechanism.</description><subject>Alanine - chemistry</subject><subject>Alanine - genetics</subject><subject>Alanine - metabolism</subject><subject>CAT tail</subject><subject>chaperone</subject><subject>Heat-Shock Response</subject><subject>molecular chaperone</subject><subject>Molecular Chaperones - chemistry</subject><subject>Molecular Chaperones - genetics</subject><subject>Molecular Chaperones - metabolism</subject><subject>Peptides - chemistry</subject><subject>Peptides - genetics</subject><subject>Peptides - metabolism</subject><subject>polyQ</subject><subject>polyserine</subject><subject>polyserine aggregation</subject><subject>polythreonine</subject><subject>polythreonine aggregation</subject><subject>Protein Aggregates</subject><subject>Protein Biosynthesis</subject><subject>Proteostasis</subject><subject>ribosome stalling</subject><subject>Ribosomes - genetics</subject><subject>Ribosomes - metabolism</subject><subject>RNA-Binding Proteins</subject><subject>RQC</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Threonine - metabolism</subject><issn>1097-2765</issn><issn>1097-4164</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtOwzAQRS0EoqXwBwhlySbFryTOBglVvKRKbNq15dqT1pUTBzut2r8nUQtLVjO6c2eu5iB0T_CUYJI_bae1dxrclGLKe2mKCblAY4LLIuUk55fnnhZ5NkI3MW4xJjwT5TUasZILQQkdo-ViE8A3toE0WL1JtAorfzi6tINQ20a5BA4dNNH6JjHB7iEmar0OsFbdIPkqiZ1yDkzSendsoe2sgXiLrirlItyd6wQt314Xs490_vX-OXuZp5qKokt5wVkGLCemMmVRCaVNrrUwmQGmDIWCUJGRsp_zfFXyXAjImNa0whVoRhmboMfT3Tb47x3ETtY29kycasDvomSEsizDucC9lZ-sOvgYA1SyDbZW4SgJlgNQuZUnoHIAOqg90H7t4ZywW9Vg_pZ-CfaG55MB-j_3FoKM2kKjwdgAupPG2_8TfgBOq4qP</recordid><startdate>20241121</startdate><enddate>20241121</enddate><creator>Chang, Weili Denyse</creator><creator>Yoon, Mi-Jeong</creator><creator>Yeo, Kian Hua</creator><creator>Choe, Young-Jun</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3062-057X</orcidid></search><sort><creationdate>20241121</creationdate><title>Threonine-rich carboxyl-terminal extension drives aggregation of stalled polypeptides</title><author>Chang, Weili Denyse ; Yoon, Mi-Jeong ; Yeo, Kian Hua ; Choe, Young-Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-47435e361dfd97f8acd6cc8d5de3ad2e712851961d46b94688e53cc2f0fec3233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alanine - chemistry</topic><topic>Alanine - genetics</topic><topic>Alanine - metabolism</topic><topic>CAT tail</topic><topic>chaperone</topic><topic>Heat-Shock Response</topic><topic>molecular chaperone</topic><topic>Molecular Chaperones - chemistry</topic><topic>Molecular Chaperones - genetics</topic><topic>Molecular Chaperones - metabolism</topic><topic>Peptides - chemistry</topic><topic>Peptides - genetics</topic><topic>Peptides - metabolism</topic><topic>polyQ</topic><topic>polyserine</topic><topic>polyserine aggregation</topic><topic>polythreonine</topic><topic>polythreonine aggregation</topic><topic>Protein Aggregates</topic><topic>Protein Biosynthesis</topic><topic>Proteostasis</topic><topic>ribosome stalling</topic><topic>Ribosomes - genetics</topic><topic>Ribosomes - metabolism</topic><topic>RNA-Binding Proteins</topic><topic>RQC</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Threonine - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Weili Denyse</creatorcontrib><creatorcontrib>Yoon, Mi-Jeong</creatorcontrib><creatorcontrib>Yeo, Kian Hua</creatorcontrib><creatorcontrib>Choe, Young-Jun</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Weili Denyse</au><au>Yoon, Mi-Jeong</au><au>Yeo, Kian Hua</au><au>Choe, Young-Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Threonine-rich carboxyl-terminal extension drives aggregation of stalled polypeptides</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2024-11-21</date><risdate>2024</risdate><volume>84</volume><issue>22</issue><spage>4334</spage><epage>4349.e7</epage><pages>4334-4349.e7</pages><issn>1097-2765</issn><issn>1097-4164</issn><eissn>1097-4164</eissn><abstract>Ribosomes translating damaged mRNAs may stall and prematurely split into their large and small subunits. The split large ribosome subunits can continue elongating stalled polypeptides. In yeast, this mRNA-independent translation appends the C-terminal alanine/threonine tail (CAT tail) to stalled polypeptides. If not degraded by the ribosome-associated quality control (RQC), CAT-tailed stalled polypeptides form aggregates. How the CAT tail, a low-complexity region composed of alanine and threonine, drives protein aggregation remains unknown. In this study, we demonstrate that C-terminal polythreonine or threonine-enriched tails form detergent-resistant aggregates. These aggregates exhibit a robust seeding effect on shorter tails with lower threonine content, elucidating how heterogeneous CAT tails co-aggregate. Polythreonine aggregates sequester molecular chaperones, disturbing proteostasis and provoking the heat shock response. Furthermore, polythreonine cross-seeds detergent-resistant polyserine aggregation, indicating structural similarity between the two aggregates. This study identifies polythreonine and polyserine as a distinct group of aggregation-prone protein motifs. [Display omitted] •tRNA levels influence the composition of C-terminal extensions of stalled polypeptides•Threonine-rich extensions form detergent-insoluble aggregates•Threonine-based protein aggregates display robust seeding effects•Polythreonine aggregates sequester polyserine When ribosomes stall during translation of defective mRNAs, the resulting incomplete polypeptides form detergent-insoluble aggregates. Chang &amp; Yoon et al. demonstrate that threonine residues drive this aberrant protein aggregation in Saccharomyces cerevisiae. This study uncovers a distinctive protein aggregation mechanism.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>39488212</pmid><doi>10.1016/j.molcel.2024.10.011</doi><orcidid>https://orcid.org/0000-0003-3062-057X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1097-2765
ispartof Molecular cell, 2024-11, Vol.84 (22), p.4334-4349.e7
issn 1097-2765
1097-4164
1097-4164
language eng
recordid cdi_proquest_miscellaneous_3123550680
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Alanine - chemistry
Alanine - genetics
Alanine - metabolism
CAT tail
chaperone
Heat-Shock Response
molecular chaperone
Molecular Chaperones - chemistry
Molecular Chaperones - genetics
Molecular Chaperones - metabolism
Peptides - chemistry
Peptides - genetics
Peptides - metabolism
polyQ
polyserine
polyserine aggregation
polythreonine
polythreonine aggregation
Protein Aggregates
Protein Biosynthesis
Proteostasis
ribosome stalling
Ribosomes - genetics
Ribosomes - metabolism
RNA-Binding Proteins
RQC
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - chemistry
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Threonine - metabolism
title Threonine-rich carboxyl-terminal extension drives aggregation of stalled polypeptides
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A08%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Threonine-rich%20carboxyl-terminal%20extension%20drives%20aggregation%20of%20stalled%20polypeptides&rft.jtitle=Molecular%20cell&rft.au=Chang,%20Weili%20Denyse&rft.date=2024-11-21&rft.volume=84&rft.issue=22&rft.spage=4334&rft.epage=4349.e7&rft.pages=4334-4349.e7&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2024.10.011&rft_dat=%3Cproquest_cross%3E3123550680%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3123550680&rft_id=info:pmid/39488212&rft_els_id=S1097276524008347&rfr_iscdi=true