Threonine-rich carboxyl-terminal extension drives aggregation of stalled polypeptides
Ribosomes translating damaged mRNAs may stall and prematurely split into their large and small subunits. The split large ribosome subunits can continue elongating stalled polypeptides. In yeast, this mRNA-independent translation appends the C-terminal alanine/threonine tail (CAT tail) to stalled pol...
Gespeichert in:
Veröffentlicht in: | Molecular cell 2024-11, Vol.84 (22), p.4334-4349.e7 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4349.e7 |
---|---|
container_issue | 22 |
container_start_page | 4334 |
container_title | Molecular cell |
container_volume | 84 |
creator | Chang, Weili Denyse Yoon, Mi-Jeong Yeo, Kian Hua Choe, Young-Jun |
description | Ribosomes translating damaged mRNAs may stall and prematurely split into their large and small subunits. The split large ribosome subunits can continue elongating stalled polypeptides. In yeast, this mRNA-independent translation appends the C-terminal alanine/threonine tail (CAT tail) to stalled polypeptides. If not degraded by the ribosome-associated quality control (RQC), CAT-tailed stalled polypeptides form aggregates. How the CAT tail, a low-complexity region composed of alanine and threonine, drives protein aggregation remains unknown. In this study, we demonstrate that C-terminal polythreonine or threonine-enriched tails form detergent-resistant aggregates. These aggregates exhibit a robust seeding effect on shorter tails with lower threonine content, elucidating how heterogeneous CAT tails co-aggregate. Polythreonine aggregates sequester molecular chaperones, disturbing proteostasis and provoking the heat shock response. Furthermore, polythreonine cross-seeds detergent-resistant polyserine aggregation, indicating structural similarity between the two aggregates. This study identifies polythreonine and polyserine as a distinct group of aggregation-prone protein motifs.
[Display omitted]
•tRNA levels influence the composition of C-terminal extensions of stalled polypeptides•Threonine-rich extensions form detergent-insoluble aggregates•Threonine-based protein aggregates display robust seeding effects•Polythreonine aggregates sequester polyserine
When ribosomes stall during translation of defective mRNAs, the resulting incomplete polypeptides form detergent-insoluble aggregates. Chang & Yoon et al. demonstrate that threonine residues drive this aberrant protein aggregation in Saccharomyces cerevisiae. This study uncovers a distinctive protein aggregation mechanism. |
doi_str_mv | 10.1016/j.molcel.2024.10.011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3123550680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1097276524008347</els_id><sourcerecordid>3123550680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-47435e361dfd97f8acd6cc8d5de3ad2e712851961d46b94688e53cc2f0fec3233</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqXwBwhlySbFryTOBglVvKRKbNq15dqT1pUTBzut2r8nUQtLVjO6c2eu5iB0T_CUYJI_bae1dxrclGLKe2mKCblAY4LLIuUk55fnnhZ5NkI3MW4xJjwT5TUasZILQQkdo-ViE8A3toE0WL1JtAorfzi6tINQ20a5BA4dNNH6JjHB7iEmar0OsFbdIPkqiZ1yDkzSendsoe2sgXiLrirlItyd6wQt314Xs490_vX-OXuZp5qKokt5wVkGLCemMmVRCaVNrrUwmQGmDIWCUJGRsp_zfFXyXAjImNa0whVoRhmboMfT3Tb47x3ETtY29kycasDvomSEsizDucC9lZ-sOvgYA1SyDbZW4SgJlgNQuZUnoHIAOqg90H7t4ZywW9Vg_pZ-CfaG55MB-j_3FoKM2kKjwdgAupPG2_8TfgBOq4qP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123550680</pqid></control><display><type>article</type><title>Threonine-rich carboxyl-terminal extension drives aggregation of stalled polypeptides</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Chang, Weili Denyse ; Yoon, Mi-Jeong ; Yeo, Kian Hua ; Choe, Young-Jun</creator><creatorcontrib>Chang, Weili Denyse ; Yoon, Mi-Jeong ; Yeo, Kian Hua ; Choe, Young-Jun</creatorcontrib><description>Ribosomes translating damaged mRNAs may stall and prematurely split into their large and small subunits. The split large ribosome subunits can continue elongating stalled polypeptides. In yeast, this mRNA-independent translation appends the C-terminal alanine/threonine tail (CAT tail) to stalled polypeptides. If not degraded by the ribosome-associated quality control (RQC), CAT-tailed stalled polypeptides form aggregates. How the CAT tail, a low-complexity region composed of alanine and threonine, drives protein aggregation remains unknown. In this study, we demonstrate that C-terminal polythreonine or threonine-enriched tails form detergent-resistant aggregates. These aggregates exhibit a robust seeding effect on shorter tails with lower threonine content, elucidating how heterogeneous CAT tails co-aggregate. Polythreonine aggregates sequester molecular chaperones, disturbing proteostasis and provoking the heat shock response. Furthermore, polythreonine cross-seeds detergent-resistant polyserine aggregation, indicating structural similarity between the two aggregates. This study identifies polythreonine and polyserine as a distinct group of aggregation-prone protein motifs.
[Display omitted]
•tRNA levels influence the composition of C-terminal extensions of stalled polypeptides•Threonine-rich extensions form detergent-insoluble aggregates•Threonine-based protein aggregates display robust seeding effects•Polythreonine aggregates sequester polyserine
When ribosomes stall during translation of defective mRNAs, the resulting incomplete polypeptides form detergent-insoluble aggregates. Chang & Yoon et al. demonstrate that threonine residues drive this aberrant protein aggregation in Saccharomyces cerevisiae. This study uncovers a distinctive protein aggregation mechanism.</description><identifier>ISSN: 1097-2765</identifier><identifier>ISSN: 1097-4164</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2024.10.011</identifier><identifier>PMID: 39488212</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Alanine - chemistry ; Alanine - genetics ; Alanine - metabolism ; CAT tail ; chaperone ; Heat-Shock Response ; molecular chaperone ; Molecular Chaperones - chemistry ; Molecular Chaperones - genetics ; Molecular Chaperones - metabolism ; Peptides - chemistry ; Peptides - genetics ; Peptides - metabolism ; polyQ ; polyserine ; polyserine aggregation ; polythreonine ; polythreonine aggregation ; Protein Aggregates ; Protein Biosynthesis ; Proteostasis ; ribosome stalling ; Ribosomes - genetics ; Ribosomes - metabolism ; RNA-Binding Proteins ; RQC ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - chemistry ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Threonine - metabolism</subject><ispartof>Molecular cell, 2024-11, Vol.84 (22), p.4334-4349.e7</ispartof><rights>2024 The Author(s)</rights><rights>Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-47435e361dfd97f8acd6cc8d5de3ad2e712851961d46b94688e53cc2f0fec3233</cites><orcidid>0000-0003-3062-057X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.molcel.2024.10.011$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39488212$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chang, Weili Denyse</creatorcontrib><creatorcontrib>Yoon, Mi-Jeong</creatorcontrib><creatorcontrib>Yeo, Kian Hua</creatorcontrib><creatorcontrib>Choe, Young-Jun</creatorcontrib><title>Threonine-rich carboxyl-terminal extension drives aggregation of stalled polypeptides</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>Ribosomes translating damaged mRNAs may stall and prematurely split into their large and small subunits. The split large ribosome subunits can continue elongating stalled polypeptides. In yeast, this mRNA-independent translation appends the C-terminal alanine/threonine tail (CAT tail) to stalled polypeptides. If not degraded by the ribosome-associated quality control (RQC), CAT-tailed stalled polypeptides form aggregates. How the CAT tail, a low-complexity region composed of alanine and threonine, drives protein aggregation remains unknown. In this study, we demonstrate that C-terminal polythreonine or threonine-enriched tails form detergent-resistant aggregates. These aggregates exhibit a robust seeding effect on shorter tails with lower threonine content, elucidating how heterogeneous CAT tails co-aggregate. Polythreonine aggregates sequester molecular chaperones, disturbing proteostasis and provoking the heat shock response. Furthermore, polythreonine cross-seeds detergent-resistant polyserine aggregation, indicating structural similarity between the two aggregates. This study identifies polythreonine and polyserine as a distinct group of aggregation-prone protein motifs.
[Display omitted]
•tRNA levels influence the composition of C-terminal extensions of stalled polypeptides•Threonine-rich extensions form detergent-insoluble aggregates•Threonine-based protein aggregates display robust seeding effects•Polythreonine aggregates sequester polyserine
When ribosomes stall during translation of defective mRNAs, the resulting incomplete polypeptides form detergent-insoluble aggregates. Chang & Yoon et al. demonstrate that threonine residues drive this aberrant protein aggregation in Saccharomyces cerevisiae. This study uncovers a distinctive protein aggregation mechanism.</description><subject>Alanine - chemistry</subject><subject>Alanine - genetics</subject><subject>Alanine - metabolism</subject><subject>CAT tail</subject><subject>chaperone</subject><subject>Heat-Shock Response</subject><subject>molecular chaperone</subject><subject>Molecular Chaperones - chemistry</subject><subject>Molecular Chaperones - genetics</subject><subject>Molecular Chaperones - metabolism</subject><subject>Peptides - chemistry</subject><subject>Peptides - genetics</subject><subject>Peptides - metabolism</subject><subject>polyQ</subject><subject>polyserine</subject><subject>polyserine aggregation</subject><subject>polythreonine</subject><subject>polythreonine aggregation</subject><subject>Protein Aggregates</subject><subject>Protein Biosynthesis</subject><subject>Proteostasis</subject><subject>ribosome stalling</subject><subject>Ribosomes - genetics</subject><subject>Ribosomes - metabolism</subject><subject>RNA-Binding Proteins</subject><subject>RQC</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Threonine - metabolism</subject><issn>1097-2765</issn><issn>1097-4164</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtOwzAQRS0EoqXwBwhlySbFryTOBglVvKRKbNq15dqT1pUTBzut2r8nUQtLVjO6c2eu5iB0T_CUYJI_bae1dxrclGLKe2mKCblAY4LLIuUk55fnnhZ5NkI3MW4xJjwT5TUasZILQQkdo-ViE8A3toE0WL1JtAorfzi6tINQ20a5BA4dNNH6JjHB7iEmar0OsFbdIPkqiZ1yDkzSendsoe2sgXiLrirlItyd6wQt314Xs490_vX-OXuZp5qKokt5wVkGLCemMmVRCaVNrrUwmQGmDIWCUJGRsp_zfFXyXAjImNa0whVoRhmboMfT3Tb47x3ETtY29kycasDvomSEsizDucC9lZ-sOvgYA1SyDbZW4SgJlgNQuZUnoHIAOqg90H7t4ZywW9Vg_pZ-CfaG55MB-j_3FoKM2kKjwdgAupPG2_8TfgBOq4qP</recordid><startdate>20241121</startdate><enddate>20241121</enddate><creator>Chang, Weili Denyse</creator><creator>Yoon, Mi-Jeong</creator><creator>Yeo, Kian Hua</creator><creator>Choe, Young-Jun</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3062-057X</orcidid></search><sort><creationdate>20241121</creationdate><title>Threonine-rich carboxyl-terminal extension drives aggregation of stalled polypeptides</title><author>Chang, Weili Denyse ; Yoon, Mi-Jeong ; Yeo, Kian Hua ; Choe, Young-Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-47435e361dfd97f8acd6cc8d5de3ad2e712851961d46b94688e53cc2f0fec3233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alanine - chemistry</topic><topic>Alanine - genetics</topic><topic>Alanine - metabolism</topic><topic>CAT tail</topic><topic>chaperone</topic><topic>Heat-Shock Response</topic><topic>molecular chaperone</topic><topic>Molecular Chaperones - chemistry</topic><topic>Molecular Chaperones - genetics</topic><topic>Molecular Chaperones - metabolism</topic><topic>Peptides - chemistry</topic><topic>Peptides - genetics</topic><topic>Peptides - metabolism</topic><topic>polyQ</topic><topic>polyserine</topic><topic>polyserine aggregation</topic><topic>polythreonine</topic><topic>polythreonine aggregation</topic><topic>Protein Aggregates</topic><topic>Protein Biosynthesis</topic><topic>Proteostasis</topic><topic>ribosome stalling</topic><topic>Ribosomes - genetics</topic><topic>Ribosomes - metabolism</topic><topic>RNA-Binding Proteins</topic><topic>RQC</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Threonine - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Weili Denyse</creatorcontrib><creatorcontrib>Yoon, Mi-Jeong</creatorcontrib><creatorcontrib>Yeo, Kian Hua</creatorcontrib><creatorcontrib>Choe, Young-Jun</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Weili Denyse</au><au>Yoon, Mi-Jeong</au><au>Yeo, Kian Hua</au><au>Choe, Young-Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Threonine-rich carboxyl-terminal extension drives aggregation of stalled polypeptides</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2024-11-21</date><risdate>2024</risdate><volume>84</volume><issue>22</issue><spage>4334</spage><epage>4349.e7</epage><pages>4334-4349.e7</pages><issn>1097-2765</issn><issn>1097-4164</issn><eissn>1097-4164</eissn><abstract>Ribosomes translating damaged mRNAs may stall and prematurely split into their large and small subunits. The split large ribosome subunits can continue elongating stalled polypeptides. In yeast, this mRNA-independent translation appends the C-terminal alanine/threonine tail (CAT tail) to stalled polypeptides. If not degraded by the ribosome-associated quality control (RQC), CAT-tailed stalled polypeptides form aggregates. How the CAT tail, a low-complexity region composed of alanine and threonine, drives protein aggregation remains unknown. In this study, we demonstrate that C-terminal polythreonine or threonine-enriched tails form detergent-resistant aggregates. These aggregates exhibit a robust seeding effect on shorter tails with lower threonine content, elucidating how heterogeneous CAT tails co-aggregate. Polythreonine aggregates sequester molecular chaperones, disturbing proteostasis and provoking the heat shock response. Furthermore, polythreonine cross-seeds detergent-resistant polyserine aggregation, indicating structural similarity between the two aggregates. This study identifies polythreonine and polyserine as a distinct group of aggregation-prone protein motifs.
[Display omitted]
•tRNA levels influence the composition of C-terminal extensions of stalled polypeptides•Threonine-rich extensions form detergent-insoluble aggregates•Threonine-based protein aggregates display robust seeding effects•Polythreonine aggregates sequester polyserine
When ribosomes stall during translation of defective mRNAs, the resulting incomplete polypeptides form detergent-insoluble aggregates. Chang & Yoon et al. demonstrate that threonine residues drive this aberrant protein aggregation in Saccharomyces cerevisiae. This study uncovers a distinctive protein aggregation mechanism.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>39488212</pmid><doi>10.1016/j.molcel.2024.10.011</doi><orcidid>https://orcid.org/0000-0003-3062-057X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1097-2765 |
ispartof | Molecular cell, 2024-11, Vol.84 (22), p.4334-4349.e7 |
issn | 1097-2765 1097-4164 1097-4164 |
language | eng |
recordid | cdi_proquest_miscellaneous_3123550680 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Alanine - chemistry Alanine - genetics Alanine - metabolism CAT tail chaperone Heat-Shock Response molecular chaperone Molecular Chaperones - chemistry Molecular Chaperones - genetics Molecular Chaperones - metabolism Peptides - chemistry Peptides - genetics Peptides - metabolism polyQ polyserine polyserine aggregation polythreonine polythreonine aggregation Protein Aggregates Protein Biosynthesis Proteostasis ribosome stalling Ribosomes - genetics Ribosomes - metabolism RNA-Binding Proteins RQC Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - chemistry Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Threonine - metabolism |
title | Threonine-rich carboxyl-terminal extension drives aggregation of stalled polypeptides |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A08%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Threonine-rich%20carboxyl-terminal%20extension%20drives%20aggregation%20of%20stalled%20polypeptides&rft.jtitle=Molecular%20cell&rft.au=Chang,%20Weili%20Denyse&rft.date=2024-11-21&rft.volume=84&rft.issue=22&rft.spage=4334&rft.epage=4349.e7&rft.pages=4334-4349.e7&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2024.10.011&rft_dat=%3Cproquest_cross%3E3123550680%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3123550680&rft_id=info:pmid/39488212&rft_els_id=S1097276524008347&rfr_iscdi=true |