Metasurface-enabled 3D imaging via local bright spot gray scale matching using the structured light dot array
Three-dimensional (3D) imaging is widely utilized in various applications, such as light detection, autonomous vehicles, and machine vision. However, conventional 3D imaging systems often rely on bulky optical components. Metasurfaces, as next-generation optical devices, possess flexible wavefront m...
Gespeichert in:
Veröffentlicht in: | Optics letters 2024-11, Vol.49 (21), p.6325 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 21 |
container_start_page | 6325 |
container_title | Optics letters |
container_volume | 49 |
creator | Zhang, Zhengren Sun, Qian Qu, Anjun Yang, Mengran Li, Zile |
description | Three-dimensional (3D) imaging is widely utilized in various applications, such as light detection, autonomous vehicles, and machine vision. However, conventional 3D imaging systems often rely on bulky optical components. Metasurfaces, as next-generation optical devices, possess flexible wavefront modulation capabilities and excellent combination with computer vision algorithms. Here, we propose a large field-of-view (FOV) structured light dot array projection device based on a metasurface, covering a 2π-FOV, for projecting coded point clouds in Fourier space. We explore a local bright spot gray scale matching algorithm for depth extraction, enabling 3D imaging. This algorithm simplifies the data processing flow and optimizes depth extraction and feature matching processes through a customized region gray scale comparison. As a result, it effectively reduces computational complexity and enhances tolerance to image quality fluctuations. The proposed approach provides new possibilities for developing compact and high-performance planar 3D optical imaging devices, which will drive the advancement of fields such as computer vision and artificial intelligence. |
doi_str_mv | 10.1364/OL.538443 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3123367790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3126736120</sourcerecordid><originalsourceid>FETCH-LOGICAL-c203t-409ec4c0a4fcfe97282a3b6f88196c6604c283330bab2fe46eb40c00d47220433</originalsourceid><addsrcrecordid>eNpdkUtPwzAQhC0EoqVw4A8gS1zgkOJ4HSc-ovKUgnqBc-Q4TpoqaYofSP33OLRw4LIrrb4ZrWYQuozJPAbO7pb5PIGMMThC0zgBEbFUsGM0JTHjkUgEnaAza9eEEJ4CnKIJCJYlLM2mqH_TTlpvaql0pDey7HSF4QG3vWzaTYO_Wom7QckOl6ZtVg7b7eBwY-QO23DVuJdOrUbS23G6lcbWGa-cN8Gp-9FUQSJN0Jyjk1p2Vl8c9gx9PD2-L16ifPn8urjPI0UJuIgRoRVTRLJa1VqkNKMSSl5nWSy44pwwRTMAIKUsaa0Z1yUjipCKpZQSBjBDN3vfrRk-vbau6FurdNfJjR68LSCmADxNBQno9T90PXizCd-NVMiLx3SkbveUMoO1RtfF1oSIzK6ISTF2UCzzYt9BYK8Ojr7sdfVH_oYO30P1gIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126736120</pqid></control><display><type>article</type><title>Metasurface-enabled 3D imaging via local bright spot gray scale matching using the structured light dot array</title><source>Optica Publishing Group Journals</source><creator>Zhang, Zhengren ; Sun, Qian ; Qu, Anjun ; Yang, Mengran ; Li, Zile</creator><creatorcontrib>Zhang, Zhengren ; Sun, Qian ; Qu, Anjun ; Yang, Mengran ; Li, Zile</creatorcontrib><description>Three-dimensional (3D) imaging is widely utilized in various applications, such as light detection, autonomous vehicles, and machine vision. However, conventional 3D imaging systems often rely on bulky optical components. Metasurfaces, as next-generation optical devices, possess flexible wavefront modulation capabilities and excellent combination with computer vision algorithms. Here, we propose a large field-of-view (FOV) structured light dot array projection device based on a metasurface, covering a 2π-FOV, for projecting coded point clouds in Fourier space. We explore a local bright spot gray scale matching algorithm for depth extraction, enabling 3D imaging. This algorithm simplifies the data processing flow and optimizes depth extraction and feature matching processes through a customized region gray scale comparison. As a result, it effectively reduces computational complexity and enhances tolerance to image quality fluctuations. The proposed approach provides new possibilities for developing compact and high-performance planar 3D optical imaging devices, which will drive the advancement of fields such as computer vision and artificial intelligence.</description><identifier>ISSN: 0146-9592</identifier><identifier>ISSN: 1539-4794</identifier><identifier>EISSN: 1539-4794</identifier><identifier>DOI: 10.1364/OL.538443</identifier><identifier>PMID: 39485478</identifier><language>eng</language><publisher>United States: Optical Society of America</publisher><subject>Algorithms ; Arrays ; Artificial intelligence ; Computer vision ; Data processing ; Field of view ; Gray scale ; Image quality ; Machine vision ; Matching ; Metasurfaces ; Optical components ; Three dimensional flow ; Three dimensional imaging ; Three dimensional models ; Wave fronts</subject><ispartof>Optics letters, 2024-11, Vol.49 (21), p.6325</ispartof><rights>Copyright Optical Society of America Nov 1, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c203t-409ec4c0a4fcfe97282a3b6f88196c6604c283330bab2fe46eb40c00d47220433</cites><orcidid>0000-0002-2994-8191 ; 0000-0002-4889-0191</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3245,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39485478$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Zhengren</creatorcontrib><creatorcontrib>Sun, Qian</creatorcontrib><creatorcontrib>Qu, Anjun</creatorcontrib><creatorcontrib>Yang, Mengran</creatorcontrib><creatorcontrib>Li, Zile</creatorcontrib><title>Metasurface-enabled 3D imaging via local bright spot gray scale matching using the structured light dot array</title><title>Optics letters</title><addtitle>Opt Lett</addtitle><description>Three-dimensional (3D) imaging is widely utilized in various applications, such as light detection, autonomous vehicles, and machine vision. However, conventional 3D imaging systems often rely on bulky optical components. Metasurfaces, as next-generation optical devices, possess flexible wavefront modulation capabilities and excellent combination with computer vision algorithms. Here, we propose a large field-of-view (FOV) structured light dot array projection device based on a metasurface, covering a 2π-FOV, for projecting coded point clouds in Fourier space. We explore a local bright spot gray scale matching algorithm for depth extraction, enabling 3D imaging. This algorithm simplifies the data processing flow and optimizes depth extraction and feature matching processes through a customized region gray scale comparison. As a result, it effectively reduces computational complexity and enhances tolerance to image quality fluctuations. The proposed approach provides new possibilities for developing compact and high-performance planar 3D optical imaging devices, which will drive the advancement of fields such as computer vision and artificial intelligence.</description><subject>Algorithms</subject><subject>Arrays</subject><subject>Artificial intelligence</subject><subject>Computer vision</subject><subject>Data processing</subject><subject>Field of view</subject><subject>Gray scale</subject><subject>Image quality</subject><subject>Machine vision</subject><subject>Matching</subject><subject>Metasurfaces</subject><subject>Optical components</subject><subject>Three dimensional flow</subject><subject>Three dimensional imaging</subject><subject>Three dimensional models</subject><subject>Wave fronts</subject><issn>0146-9592</issn><issn>1539-4794</issn><issn>1539-4794</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkUtPwzAQhC0EoqVw4A8gS1zgkOJ4HSc-ovKUgnqBc-Q4TpoqaYofSP33OLRw4LIrrb4ZrWYQuozJPAbO7pb5PIGMMThC0zgBEbFUsGM0JTHjkUgEnaAza9eEEJ4CnKIJCJYlLM2mqH_TTlpvaql0pDey7HSF4QG3vWzaTYO_Wom7QckOl6ZtVg7b7eBwY-QO23DVuJdOrUbS23G6lcbWGa-cN8Gp-9FUQSJN0Jyjk1p2Vl8c9gx9PD2-L16ifPn8urjPI0UJuIgRoRVTRLJa1VqkNKMSSl5nWSy44pwwRTMAIKUsaa0Z1yUjipCKpZQSBjBDN3vfrRk-vbau6FurdNfJjR68LSCmADxNBQno9T90PXizCd-NVMiLx3SkbveUMoO1RtfF1oSIzK6ISTF2UCzzYt9BYK8Ojr7sdfVH_oYO30P1gIg</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Zhang, Zhengren</creator><creator>Sun, Qian</creator><creator>Qu, Anjun</creator><creator>Yang, Mengran</creator><creator>Li, Zile</creator><general>Optical Society of America</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2994-8191</orcidid><orcidid>https://orcid.org/0000-0002-4889-0191</orcidid></search><sort><creationdate>20241101</creationdate><title>Metasurface-enabled 3D imaging via local bright spot gray scale matching using the structured light dot array</title><author>Zhang, Zhengren ; Sun, Qian ; Qu, Anjun ; Yang, Mengran ; Li, Zile</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c203t-409ec4c0a4fcfe97282a3b6f88196c6604c283330bab2fe46eb40c00d47220433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Arrays</topic><topic>Artificial intelligence</topic><topic>Computer vision</topic><topic>Data processing</topic><topic>Field of view</topic><topic>Gray scale</topic><topic>Image quality</topic><topic>Machine vision</topic><topic>Matching</topic><topic>Metasurfaces</topic><topic>Optical components</topic><topic>Three dimensional flow</topic><topic>Three dimensional imaging</topic><topic>Three dimensional models</topic><topic>Wave fronts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zhengren</creatorcontrib><creatorcontrib>Sun, Qian</creatorcontrib><creatorcontrib>Qu, Anjun</creatorcontrib><creatorcontrib>Yang, Mengran</creatorcontrib><creatorcontrib>Li, Zile</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Optics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Zhengren</au><au>Sun, Qian</au><au>Qu, Anjun</au><au>Yang, Mengran</au><au>Li, Zile</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metasurface-enabled 3D imaging via local bright spot gray scale matching using the structured light dot array</atitle><jtitle>Optics letters</jtitle><addtitle>Opt Lett</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>49</volume><issue>21</issue><spage>6325</spage><pages>6325-</pages><issn>0146-9592</issn><issn>1539-4794</issn><eissn>1539-4794</eissn><abstract>Three-dimensional (3D) imaging is widely utilized in various applications, such as light detection, autonomous vehicles, and machine vision. However, conventional 3D imaging systems often rely on bulky optical components. Metasurfaces, as next-generation optical devices, possess flexible wavefront modulation capabilities and excellent combination with computer vision algorithms. Here, we propose a large field-of-view (FOV) structured light dot array projection device based on a metasurface, covering a 2π-FOV, for projecting coded point clouds in Fourier space. We explore a local bright spot gray scale matching algorithm for depth extraction, enabling 3D imaging. This algorithm simplifies the data processing flow and optimizes depth extraction and feature matching processes through a customized region gray scale comparison. As a result, it effectively reduces computational complexity and enhances tolerance to image quality fluctuations. The proposed approach provides new possibilities for developing compact and high-performance planar 3D optical imaging devices, which will drive the advancement of fields such as computer vision and artificial intelligence.</abstract><cop>United States</cop><pub>Optical Society of America</pub><pmid>39485478</pmid><doi>10.1364/OL.538443</doi><orcidid>https://orcid.org/0000-0002-2994-8191</orcidid><orcidid>https://orcid.org/0000-0002-4889-0191</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0146-9592 |
ispartof | Optics letters, 2024-11, Vol.49 (21), p.6325 |
issn | 0146-9592 1539-4794 1539-4794 |
language | eng |
recordid | cdi_proquest_miscellaneous_3123367790 |
source | Optica Publishing Group Journals |
subjects | Algorithms Arrays Artificial intelligence Computer vision Data processing Field of view Gray scale Image quality Machine vision Matching Metasurfaces Optical components Three dimensional flow Three dimensional imaging Three dimensional models Wave fronts |
title | Metasurface-enabled 3D imaging via local bright spot gray scale matching using the structured light dot array |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T18%3A13%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metasurface-enabled%203D%20imaging%20via%20local%20bright%20spot%20gray%20scale%20matching%20using%20the%20structured%20light%20dot%20array&rft.jtitle=Optics%20letters&rft.au=Zhang,%20Zhengren&rft.date=2024-11-01&rft.volume=49&rft.issue=21&rft.spage=6325&rft.pages=6325-&rft.issn=0146-9592&rft.eissn=1539-4794&rft_id=info:doi/10.1364/OL.538443&rft_dat=%3Cproquest_cross%3E3126736120%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3126736120&rft_id=info:pmid/39485478&rfr_iscdi=true |