Metasurface-enabled 3D imaging via local bright spot gray scale matching using the structured light dot array

Three-dimensional (3D) imaging is widely utilized in various applications, such as light detection, autonomous vehicles, and machine vision. However, conventional 3D imaging systems often rely on bulky optical components. Metasurfaces, as next-generation optical devices, possess flexible wavefront m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics letters 2024-11, Vol.49 (21), p.6325
Hauptverfasser: Zhang, Zhengren, Sun, Qian, Qu, Anjun, Yang, Mengran, Li, Zile
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 21
container_start_page 6325
container_title Optics letters
container_volume 49
creator Zhang, Zhengren
Sun, Qian
Qu, Anjun
Yang, Mengran
Li, Zile
description Three-dimensional (3D) imaging is widely utilized in various applications, such as light detection, autonomous vehicles, and machine vision. However, conventional 3D imaging systems often rely on bulky optical components. Metasurfaces, as next-generation optical devices, possess flexible wavefront modulation capabilities and excellent combination with computer vision algorithms. Here, we propose a large field-of-view (FOV) structured light dot array projection device based on a metasurface, covering a 2π-FOV, for projecting coded point clouds in Fourier space. We explore a local bright spot gray scale matching algorithm for depth extraction, enabling 3D imaging. This algorithm simplifies the data processing flow and optimizes depth extraction and feature matching processes through a customized region gray scale comparison. As a result, it effectively reduces computational complexity and enhances tolerance to image quality fluctuations. The proposed approach provides new possibilities for developing compact and high-performance planar 3D optical imaging devices, which will drive the advancement of fields such as computer vision and artificial intelligence.
doi_str_mv 10.1364/OL.538443
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3123367790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3126736120</sourcerecordid><originalsourceid>FETCH-LOGICAL-c203t-409ec4c0a4fcfe97282a3b6f88196c6604c283330bab2fe46eb40c00d47220433</originalsourceid><addsrcrecordid>eNpdkUtPwzAQhC0EoqVw4A8gS1zgkOJ4HSc-ovKUgnqBc-Q4TpoqaYofSP33OLRw4LIrrb4ZrWYQuozJPAbO7pb5PIGMMThC0zgBEbFUsGM0JTHjkUgEnaAza9eEEJ4CnKIJCJYlLM2mqH_TTlpvaql0pDey7HSF4QG3vWzaTYO_Wom7QckOl6ZtVg7b7eBwY-QO23DVuJdOrUbS23G6lcbWGa-cN8Gp-9FUQSJN0Jyjk1p2Vl8c9gx9PD2-L16ifPn8urjPI0UJuIgRoRVTRLJa1VqkNKMSSl5nWSy44pwwRTMAIKUsaa0Z1yUjipCKpZQSBjBDN3vfrRk-vbau6FurdNfJjR68LSCmADxNBQno9T90PXizCd-NVMiLx3SkbveUMoO1RtfF1oSIzK6ISTF2UCzzYt9BYK8Ojr7sdfVH_oYO30P1gIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126736120</pqid></control><display><type>article</type><title>Metasurface-enabled 3D imaging via local bright spot gray scale matching using the structured light dot array</title><source>Optica Publishing Group Journals</source><creator>Zhang, Zhengren ; Sun, Qian ; Qu, Anjun ; Yang, Mengran ; Li, Zile</creator><creatorcontrib>Zhang, Zhengren ; Sun, Qian ; Qu, Anjun ; Yang, Mengran ; Li, Zile</creatorcontrib><description>Three-dimensional (3D) imaging is widely utilized in various applications, such as light detection, autonomous vehicles, and machine vision. However, conventional 3D imaging systems often rely on bulky optical components. Metasurfaces, as next-generation optical devices, possess flexible wavefront modulation capabilities and excellent combination with computer vision algorithms. Here, we propose a large field-of-view (FOV) structured light dot array projection device based on a metasurface, covering a 2π-FOV, for projecting coded point clouds in Fourier space. We explore a local bright spot gray scale matching algorithm for depth extraction, enabling 3D imaging. This algorithm simplifies the data processing flow and optimizes depth extraction and feature matching processes through a customized region gray scale comparison. As a result, it effectively reduces computational complexity and enhances tolerance to image quality fluctuations. The proposed approach provides new possibilities for developing compact and high-performance planar 3D optical imaging devices, which will drive the advancement of fields such as computer vision and artificial intelligence.</description><identifier>ISSN: 0146-9592</identifier><identifier>ISSN: 1539-4794</identifier><identifier>EISSN: 1539-4794</identifier><identifier>DOI: 10.1364/OL.538443</identifier><identifier>PMID: 39485478</identifier><language>eng</language><publisher>United States: Optical Society of America</publisher><subject>Algorithms ; Arrays ; Artificial intelligence ; Computer vision ; Data processing ; Field of view ; Gray scale ; Image quality ; Machine vision ; Matching ; Metasurfaces ; Optical components ; Three dimensional flow ; Three dimensional imaging ; Three dimensional models ; Wave fronts</subject><ispartof>Optics letters, 2024-11, Vol.49 (21), p.6325</ispartof><rights>Copyright Optical Society of America Nov 1, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c203t-409ec4c0a4fcfe97282a3b6f88196c6604c283330bab2fe46eb40c00d47220433</cites><orcidid>0000-0002-2994-8191 ; 0000-0002-4889-0191</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3245,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39485478$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Zhengren</creatorcontrib><creatorcontrib>Sun, Qian</creatorcontrib><creatorcontrib>Qu, Anjun</creatorcontrib><creatorcontrib>Yang, Mengran</creatorcontrib><creatorcontrib>Li, Zile</creatorcontrib><title>Metasurface-enabled 3D imaging via local bright spot gray scale matching using the structured light dot array</title><title>Optics letters</title><addtitle>Opt Lett</addtitle><description>Three-dimensional (3D) imaging is widely utilized in various applications, such as light detection, autonomous vehicles, and machine vision. However, conventional 3D imaging systems often rely on bulky optical components. Metasurfaces, as next-generation optical devices, possess flexible wavefront modulation capabilities and excellent combination with computer vision algorithms. Here, we propose a large field-of-view (FOV) structured light dot array projection device based on a metasurface, covering a 2π-FOV, for projecting coded point clouds in Fourier space. We explore a local bright spot gray scale matching algorithm for depth extraction, enabling 3D imaging. This algorithm simplifies the data processing flow and optimizes depth extraction and feature matching processes through a customized region gray scale comparison. As a result, it effectively reduces computational complexity and enhances tolerance to image quality fluctuations. The proposed approach provides new possibilities for developing compact and high-performance planar 3D optical imaging devices, which will drive the advancement of fields such as computer vision and artificial intelligence.</description><subject>Algorithms</subject><subject>Arrays</subject><subject>Artificial intelligence</subject><subject>Computer vision</subject><subject>Data processing</subject><subject>Field of view</subject><subject>Gray scale</subject><subject>Image quality</subject><subject>Machine vision</subject><subject>Matching</subject><subject>Metasurfaces</subject><subject>Optical components</subject><subject>Three dimensional flow</subject><subject>Three dimensional imaging</subject><subject>Three dimensional models</subject><subject>Wave fronts</subject><issn>0146-9592</issn><issn>1539-4794</issn><issn>1539-4794</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkUtPwzAQhC0EoqVw4A8gS1zgkOJ4HSc-ovKUgnqBc-Q4TpoqaYofSP33OLRw4LIrrb4ZrWYQuozJPAbO7pb5PIGMMThC0zgBEbFUsGM0JTHjkUgEnaAza9eEEJ4CnKIJCJYlLM2mqH_TTlpvaql0pDey7HSF4QG3vWzaTYO_Wom7QckOl6ZtVg7b7eBwY-QO23DVuJdOrUbS23G6lcbWGa-cN8Gp-9FUQSJN0Jyjk1p2Vl8c9gx9PD2-L16ifPn8urjPI0UJuIgRoRVTRLJa1VqkNKMSSl5nWSy44pwwRTMAIKUsaa0Z1yUjipCKpZQSBjBDN3vfrRk-vbau6FurdNfJjR68LSCmADxNBQno9T90PXizCd-NVMiLx3SkbveUMoO1RtfF1oSIzK6ISTF2UCzzYt9BYK8Ojr7sdfVH_oYO30P1gIg</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Zhang, Zhengren</creator><creator>Sun, Qian</creator><creator>Qu, Anjun</creator><creator>Yang, Mengran</creator><creator>Li, Zile</creator><general>Optical Society of America</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2994-8191</orcidid><orcidid>https://orcid.org/0000-0002-4889-0191</orcidid></search><sort><creationdate>20241101</creationdate><title>Metasurface-enabled 3D imaging via local bright spot gray scale matching using the structured light dot array</title><author>Zhang, Zhengren ; Sun, Qian ; Qu, Anjun ; Yang, Mengran ; Li, Zile</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c203t-409ec4c0a4fcfe97282a3b6f88196c6604c283330bab2fe46eb40c00d47220433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Arrays</topic><topic>Artificial intelligence</topic><topic>Computer vision</topic><topic>Data processing</topic><topic>Field of view</topic><topic>Gray scale</topic><topic>Image quality</topic><topic>Machine vision</topic><topic>Matching</topic><topic>Metasurfaces</topic><topic>Optical components</topic><topic>Three dimensional flow</topic><topic>Three dimensional imaging</topic><topic>Three dimensional models</topic><topic>Wave fronts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zhengren</creatorcontrib><creatorcontrib>Sun, Qian</creatorcontrib><creatorcontrib>Qu, Anjun</creatorcontrib><creatorcontrib>Yang, Mengran</creatorcontrib><creatorcontrib>Li, Zile</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Optics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Zhengren</au><au>Sun, Qian</au><au>Qu, Anjun</au><au>Yang, Mengran</au><au>Li, Zile</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metasurface-enabled 3D imaging via local bright spot gray scale matching using the structured light dot array</atitle><jtitle>Optics letters</jtitle><addtitle>Opt Lett</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>49</volume><issue>21</issue><spage>6325</spage><pages>6325-</pages><issn>0146-9592</issn><issn>1539-4794</issn><eissn>1539-4794</eissn><abstract>Three-dimensional (3D) imaging is widely utilized in various applications, such as light detection, autonomous vehicles, and machine vision. However, conventional 3D imaging systems often rely on bulky optical components. Metasurfaces, as next-generation optical devices, possess flexible wavefront modulation capabilities and excellent combination with computer vision algorithms. Here, we propose a large field-of-view (FOV) structured light dot array projection device based on a metasurface, covering a 2π-FOV, for projecting coded point clouds in Fourier space. We explore a local bright spot gray scale matching algorithm for depth extraction, enabling 3D imaging. This algorithm simplifies the data processing flow and optimizes depth extraction and feature matching processes through a customized region gray scale comparison. As a result, it effectively reduces computational complexity and enhances tolerance to image quality fluctuations. The proposed approach provides new possibilities for developing compact and high-performance planar 3D optical imaging devices, which will drive the advancement of fields such as computer vision and artificial intelligence.</abstract><cop>United States</cop><pub>Optical Society of America</pub><pmid>39485478</pmid><doi>10.1364/OL.538443</doi><orcidid>https://orcid.org/0000-0002-2994-8191</orcidid><orcidid>https://orcid.org/0000-0002-4889-0191</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0146-9592
ispartof Optics letters, 2024-11, Vol.49 (21), p.6325
issn 0146-9592
1539-4794
1539-4794
language eng
recordid cdi_proquest_miscellaneous_3123367790
source Optica Publishing Group Journals
subjects Algorithms
Arrays
Artificial intelligence
Computer vision
Data processing
Field of view
Gray scale
Image quality
Machine vision
Matching
Metasurfaces
Optical components
Three dimensional flow
Three dimensional imaging
Three dimensional models
Wave fronts
title Metasurface-enabled 3D imaging via local bright spot gray scale matching using the structured light dot array
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T18%3A13%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metasurface-enabled%203D%20imaging%20via%20local%20bright%20spot%20gray%20scale%20matching%20using%20the%20structured%20light%20dot%20array&rft.jtitle=Optics%20letters&rft.au=Zhang,%20Zhengren&rft.date=2024-11-01&rft.volume=49&rft.issue=21&rft.spage=6325&rft.pages=6325-&rft.issn=0146-9592&rft.eissn=1539-4794&rft_id=info:doi/10.1364/OL.538443&rft_dat=%3Cproquest_cross%3E3126736120%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3126736120&rft_id=info:pmid/39485478&rfr_iscdi=true