Essential blood molecular signature for progression of sepsis-induced acute lung injury: Integrated bioinformatic, single-cell RNA Seq and machine learning analysis

In this study, we aimed to identify an essential blood molecular signature for chacterizing the progression of sepsis-induced acute lung injury using integrated bioinformatic and machine learning analysis. The results showed that a total of 88 functionally related ALI-associated hub genes in sepsis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2024-12, Vol.282 (Pt 3), p.136961, Article 136961
Hauptverfasser: Sun, Keyu, Wu, Fupeng, Zheng, Jiayi, Wang, Han, Li, Haidong, Xie, Zichen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue Pt 3
container_start_page 136961
container_title International journal of biological macromolecules
container_volume 282
creator Sun, Keyu
Wu, Fupeng
Zheng, Jiayi
Wang, Han
Li, Haidong
Xie, Zichen
description In this study, we aimed to identify an essential blood molecular signature for chacterizing the progression of sepsis-induced acute lung injury using integrated bioinformatic and machine learning analysis. The results showed that a total of 88 functionally related ALI-associated hub genes in sepsis were identified by MCODE analysis and they were enriched in infection and inflammtory responses, lung and cardiovascular disease pathways. These hub genes stratified ALI-sepsis and sepsis and further stratified two subtypes of sepsis-ALI with differential ALI scores, hub gene expression patterns, and levels of immune cells. A seven-gene signature including TNFRSF1A, NFKB1, FCGR2A, NFE2L2, ICAM1 and SOCS3 and PDCD1 was derived from the hub genes. These genes were significantly implicated in immune and metabolism pathways. They were expressed in six circulatory immune cells based on analysis of a single cell RNA sequencing dataset. Furthermore, the seven-gene signature was corrobarated using by integrating 12 machine learning algorithms. A premium three-gene signature NFE2L2, FCGR2A and PDCD1 for differentiating ALI-sepsis from sepsis were also derived from the seven-gene signature based on analysis of the seven core hub genes by the machine learning algorithms. Furthermore, the expressions of hub genes were verified in sepsis mice models. Therefore, our study provided an avenue to develop a molecular tool for identify and characterize progression of acute lung injury associated with sepsis.
doi_str_mv 10.1016/j.ijbiomac.2024.136961
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3123073725</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141813024077705</els_id><sourcerecordid>3123073725</sourcerecordid><originalsourceid>FETCH-LOGICAL-c278t-7f3bea86f986745cc49def1db34da245de24ce5df50f2eaa2ce6cdecb6a07a063</originalsourceid><addsrcrecordid>eNqNkc1u1DAUhSMEokPhFSovWZDBf3ESVlRVoZUqkPhZWzf2TfDIsad2gjTvw4Pi0bTdwsrS8XfPufapqgtGt4wy9X63dbvBxRnMllMut0yoXrFn1YZ1bV9TSsXzakOZZHXHBD2rXuW8K6pqWPeyOhO9LDITm-rPdc4YFgeeDD5GS-bo0aweEsluCrCsCckYE9mnOCXM2cVA4kgy7rPLtQt2NWgJmHVB4tcwERd2azp8ILdhwSnBUm7Loi4UkxkWZ94V4zB5rA16T759uSTf8Z5AKNFgfrlQbBBSKEwRwR9KzOvqxQg-45uH87z6-en6x9VNfff18-3V5V1teNstdTuKAaFTY9-pVjbGyN7iyOwgpAUuG4tcGmzs2NCRIwA3qIxFMyigLVAlzqu3J9_y2PsV86Jnl49rQsC4Zi1YI5nsuWr-A-WCtqLlR1SdUJNizglHvU9uhnTQjOpjmXqnH8vUxzL1qcwyePGQsQ4z2qexx_YK8PEEYPmU3w6TzsZhKIW4hGbRNrp_ZfwF1Ni4ZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123073725</pqid></control><display><type>article</type><title>Essential blood molecular signature for progression of sepsis-induced acute lung injury: Integrated bioinformatic, single-cell RNA Seq and machine learning analysis</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Sun, Keyu ; Wu, Fupeng ; Zheng, Jiayi ; Wang, Han ; Li, Haidong ; Xie, Zichen</creator><creatorcontrib>Sun, Keyu ; Wu, Fupeng ; Zheng, Jiayi ; Wang, Han ; Li, Haidong ; Xie, Zichen</creatorcontrib><description>In this study, we aimed to identify an essential blood molecular signature for chacterizing the progression of sepsis-induced acute lung injury using integrated bioinformatic and machine learning analysis. The results showed that a total of 88 functionally related ALI-associated hub genes in sepsis were identified by MCODE analysis and they were enriched in infection and inflammtory responses, lung and cardiovascular disease pathways. These hub genes stratified ALI-sepsis and sepsis and further stratified two subtypes of sepsis-ALI with differential ALI scores, hub gene expression patterns, and levels of immune cells. A seven-gene signature including TNFRSF1A, NFKB1, FCGR2A, NFE2L2, ICAM1 and SOCS3 and PDCD1 was derived from the hub genes. These genes were significantly implicated in immune and metabolism pathways. They were expressed in six circulatory immune cells based on analysis of a single cell RNA sequencing dataset. Furthermore, the seven-gene signature was corrobarated using by integrating 12 machine learning algorithms. A premium three-gene signature NFE2L2, FCGR2A and PDCD1 for differentiating ALI-sepsis from sepsis were also derived from the seven-gene signature based on analysis of the seven core hub genes by the machine learning algorithms. Furthermore, the expressions of hub genes were verified in sepsis mice models. Therefore, our study provided an avenue to develop a molecular tool for identify and characterize progression of acute lung injury associated with sepsis.</description><identifier>ISSN: 0141-8130</identifier><identifier>ISSN: 1879-0003</identifier><identifier>EISSN: 1879-0003</identifier><identifier>DOI: 10.1016/j.ijbiomac.2024.136961</identifier><identifier>PMID: 39481313</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Acute Lung Injury - blood ; Acute Lung Injury - etiology ; Acute Lung Injury - genetics ; Acute Lung Injury - pathology ; Animals ; bioinformatics ; Biomarkers - blood ; blood ; Blood markers ; cardiovascular diseases ; Computational Biology - methods ; data collection ; Disease Progression ; gene expression ; Gene Expression Profiling ; Humans ; intercellular adhesion molecule-1 ; lungs ; Machine Learning ; Machine learning model ; Male ; metabolism ; Mice ; Molecular signature ; RNA ; RNA-Seq ; Sepsis - blood ; Sepsis - complications ; Sepsis - genetics ; sepsis-induced acute lung injury ; Single-Cell Analysis ; Single-Cell Gene Expression Analysis ; Transcriptome</subject><ispartof>International journal of biological macromolecules, 2024-12, Vol.282 (Pt 3), p.136961, Article 136961</ispartof><rights>2024 Elsevier B.V.</rights><rights>Copyright © 2024 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c278t-7f3bea86f986745cc49def1db34da245de24ce5df50f2eaa2ce6cdecb6a07a063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijbiomac.2024.136961$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39481313$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Keyu</creatorcontrib><creatorcontrib>Wu, Fupeng</creatorcontrib><creatorcontrib>Zheng, Jiayi</creatorcontrib><creatorcontrib>Wang, Han</creatorcontrib><creatorcontrib>Li, Haidong</creatorcontrib><creatorcontrib>Xie, Zichen</creatorcontrib><title>Essential blood molecular signature for progression of sepsis-induced acute lung injury: Integrated bioinformatic, single-cell RNA Seq and machine learning analysis</title><title>International journal of biological macromolecules</title><addtitle>Int J Biol Macromol</addtitle><description>In this study, we aimed to identify an essential blood molecular signature for chacterizing the progression of sepsis-induced acute lung injury using integrated bioinformatic and machine learning analysis. The results showed that a total of 88 functionally related ALI-associated hub genes in sepsis were identified by MCODE analysis and they were enriched in infection and inflammtory responses, lung and cardiovascular disease pathways. These hub genes stratified ALI-sepsis and sepsis and further stratified two subtypes of sepsis-ALI with differential ALI scores, hub gene expression patterns, and levels of immune cells. A seven-gene signature including TNFRSF1A, NFKB1, FCGR2A, NFE2L2, ICAM1 and SOCS3 and PDCD1 was derived from the hub genes. These genes were significantly implicated in immune and metabolism pathways. They were expressed in six circulatory immune cells based on analysis of a single cell RNA sequencing dataset. Furthermore, the seven-gene signature was corrobarated using by integrating 12 machine learning algorithms. A premium three-gene signature NFE2L2, FCGR2A and PDCD1 for differentiating ALI-sepsis from sepsis were also derived from the seven-gene signature based on analysis of the seven core hub genes by the machine learning algorithms. Furthermore, the expressions of hub genes were verified in sepsis mice models. Therefore, our study provided an avenue to develop a molecular tool for identify and characterize progression of acute lung injury associated with sepsis.</description><subject>Acute Lung Injury - blood</subject><subject>Acute Lung Injury - etiology</subject><subject>Acute Lung Injury - genetics</subject><subject>Acute Lung Injury - pathology</subject><subject>Animals</subject><subject>bioinformatics</subject><subject>Biomarkers - blood</subject><subject>blood</subject><subject>Blood markers</subject><subject>cardiovascular diseases</subject><subject>Computational Biology - methods</subject><subject>data collection</subject><subject>Disease Progression</subject><subject>gene expression</subject><subject>Gene Expression Profiling</subject><subject>Humans</subject><subject>intercellular adhesion molecule-1</subject><subject>lungs</subject><subject>Machine Learning</subject><subject>Machine learning model</subject><subject>Male</subject><subject>metabolism</subject><subject>Mice</subject><subject>Molecular signature</subject><subject>RNA</subject><subject>RNA-Seq</subject><subject>Sepsis - blood</subject><subject>Sepsis - complications</subject><subject>Sepsis - genetics</subject><subject>sepsis-induced acute lung injury</subject><subject>Single-Cell Analysis</subject><subject>Single-Cell Gene Expression Analysis</subject><subject>Transcriptome</subject><issn>0141-8130</issn><issn>1879-0003</issn><issn>1879-0003</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1u1DAUhSMEokPhFSovWZDBf3ESVlRVoZUqkPhZWzf2TfDIsad2gjTvw4Pi0bTdwsrS8XfPufapqgtGt4wy9X63dbvBxRnMllMut0yoXrFn1YZ1bV9TSsXzakOZZHXHBD2rXuW8K6pqWPeyOhO9LDITm-rPdc4YFgeeDD5GS-bo0aweEsluCrCsCckYE9mnOCXM2cVA4kgy7rPLtQt2NWgJmHVB4tcwERd2azp8ILdhwSnBUm7Loi4UkxkWZ94V4zB5rA16T759uSTf8Z5AKNFgfrlQbBBSKEwRwR9KzOvqxQg-45uH87z6-en6x9VNfff18-3V5V1teNstdTuKAaFTY9-pVjbGyN7iyOwgpAUuG4tcGmzs2NCRIwA3qIxFMyigLVAlzqu3J9_y2PsV86Jnl49rQsC4Zi1YI5nsuWr-A-WCtqLlR1SdUJNizglHvU9uhnTQjOpjmXqnH8vUxzL1qcwyePGQsQ4z2qexx_YK8PEEYPmU3w6TzsZhKIW4hGbRNrp_ZfwF1Ni4ZQ</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Sun, Keyu</creator><creator>Wu, Fupeng</creator><creator>Zheng, Jiayi</creator><creator>Wang, Han</creator><creator>Li, Haidong</creator><creator>Xie, Zichen</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>202412</creationdate><title>Essential blood molecular signature for progression of sepsis-induced acute lung injury: Integrated bioinformatic, single-cell RNA Seq and machine learning analysis</title><author>Sun, Keyu ; Wu, Fupeng ; Zheng, Jiayi ; Wang, Han ; Li, Haidong ; Xie, Zichen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c278t-7f3bea86f986745cc49def1db34da245de24ce5df50f2eaa2ce6cdecb6a07a063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acute Lung Injury - blood</topic><topic>Acute Lung Injury - etiology</topic><topic>Acute Lung Injury - genetics</topic><topic>Acute Lung Injury - pathology</topic><topic>Animals</topic><topic>bioinformatics</topic><topic>Biomarkers - blood</topic><topic>blood</topic><topic>Blood markers</topic><topic>cardiovascular diseases</topic><topic>Computational Biology - methods</topic><topic>data collection</topic><topic>Disease Progression</topic><topic>gene expression</topic><topic>Gene Expression Profiling</topic><topic>Humans</topic><topic>intercellular adhesion molecule-1</topic><topic>lungs</topic><topic>Machine Learning</topic><topic>Machine learning model</topic><topic>Male</topic><topic>metabolism</topic><topic>Mice</topic><topic>Molecular signature</topic><topic>RNA</topic><topic>RNA-Seq</topic><topic>Sepsis - blood</topic><topic>Sepsis - complications</topic><topic>Sepsis - genetics</topic><topic>sepsis-induced acute lung injury</topic><topic>Single-Cell Analysis</topic><topic>Single-Cell Gene Expression Analysis</topic><topic>Transcriptome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Keyu</creatorcontrib><creatorcontrib>Wu, Fupeng</creatorcontrib><creatorcontrib>Zheng, Jiayi</creatorcontrib><creatorcontrib>Wang, Han</creatorcontrib><creatorcontrib>Li, Haidong</creatorcontrib><creatorcontrib>Xie, Zichen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>International journal of biological macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Keyu</au><au>Wu, Fupeng</au><au>Zheng, Jiayi</au><au>Wang, Han</au><au>Li, Haidong</au><au>Xie, Zichen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Essential blood molecular signature for progression of sepsis-induced acute lung injury: Integrated bioinformatic, single-cell RNA Seq and machine learning analysis</atitle><jtitle>International journal of biological macromolecules</jtitle><addtitle>Int J Biol Macromol</addtitle><date>2024-12</date><risdate>2024</risdate><volume>282</volume><issue>Pt 3</issue><spage>136961</spage><pages>136961-</pages><artnum>136961</artnum><issn>0141-8130</issn><issn>1879-0003</issn><eissn>1879-0003</eissn><abstract>In this study, we aimed to identify an essential blood molecular signature for chacterizing the progression of sepsis-induced acute lung injury using integrated bioinformatic and machine learning analysis. The results showed that a total of 88 functionally related ALI-associated hub genes in sepsis were identified by MCODE analysis and they were enriched in infection and inflammtory responses, lung and cardiovascular disease pathways. These hub genes stratified ALI-sepsis and sepsis and further stratified two subtypes of sepsis-ALI with differential ALI scores, hub gene expression patterns, and levels of immune cells. A seven-gene signature including TNFRSF1A, NFKB1, FCGR2A, NFE2L2, ICAM1 and SOCS3 and PDCD1 was derived from the hub genes. These genes were significantly implicated in immune and metabolism pathways. They were expressed in six circulatory immune cells based on analysis of a single cell RNA sequencing dataset. Furthermore, the seven-gene signature was corrobarated using by integrating 12 machine learning algorithms. A premium three-gene signature NFE2L2, FCGR2A and PDCD1 for differentiating ALI-sepsis from sepsis were also derived from the seven-gene signature based on analysis of the seven core hub genes by the machine learning algorithms. Furthermore, the expressions of hub genes were verified in sepsis mice models. Therefore, our study provided an avenue to develop a molecular tool for identify and characterize progression of acute lung injury associated with sepsis.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>39481313</pmid><doi>10.1016/j.ijbiomac.2024.136961</doi></addata></record>
fulltext fulltext
identifier ISSN: 0141-8130
ispartof International journal of biological macromolecules, 2024-12, Vol.282 (Pt 3), p.136961, Article 136961
issn 0141-8130
1879-0003
1879-0003
language eng
recordid cdi_proquest_miscellaneous_3123073725
source MEDLINE; Elsevier ScienceDirect Journals
subjects Acute Lung Injury - blood
Acute Lung Injury - etiology
Acute Lung Injury - genetics
Acute Lung Injury - pathology
Animals
bioinformatics
Biomarkers - blood
blood
Blood markers
cardiovascular diseases
Computational Biology - methods
data collection
Disease Progression
gene expression
Gene Expression Profiling
Humans
intercellular adhesion molecule-1
lungs
Machine Learning
Machine learning model
Male
metabolism
Mice
Molecular signature
RNA
RNA-Seq
Sepsis - blood
Sepsis - complications
Sepsis - genetics
sepsis-induced acute lung injury
Single-Cell Analysis
Single-Cell Gene Expression Analysis
Transcriptome
title Essential blood molecular signature for progression of sepsis-induced acute lung injury: Integrated bioinformatic, single-cell RNA Seq and machine learning analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T02%3A59%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Essential%20blood%20molecular%20signature%20for%20progression%20of%20sepsis-induced%20acute%20lung%20injury:%20Integrated%20bioinformatic,%20single-cell%20RNA%20Seq%20and%20machine%20learning%20analysis&rft.jtitle=International%20journal%20of%20biological%20macromolecules&rft.au=Sun,%20Keyu&rft.date=2024-12&rft.volume=282&rft.issue=Pt%203&rft.spage=136961&rft.pages=136961-&rft.artnum=136961&rft.issn=0141-8130&rft.eissn=1879-0003&rft_id=info:doi/10.1016/j.ijbiomac.2024.136961&rft_dat=%3Cproquest_cross%3E3123073725%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3123073725&rft_id=info:pmid/39481313&rft_els_id=S0141813024077705&rfr_iscdi=true