Effects of volcanic environment on Setaria viridis rhizospheric soil microbial keystone taxa and ecosystem multifunctionality
Keystone taxa are significant within ecosystem multifunctionality, as certain species fulfil essential functions such as recycling soil nutrients, promoting plant growth, influencing biogeochemical processes, and contributing to human health maintenance. However, there are still gaps regarding the r...
Gespeichert in:
Veröffentlicht in: | Environmental research 2024-12, Vol.263 (Pt 3), p.120262, Article 120262 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Keystone taxa are significant within ecosystem multifunctionality, as certain species fulfil essential functions such as recycling soil nutrients, promoting plant growth, influencing biogeochemical processes, and contributing to human health maintenance. However, there are still gaps regarding the relationship between microbial communities in volcanic rhizospheric soil and ecosystem multifunctionality. As a result, in this research, we employed Illumina MiSeq high-throughput sequencing to analyse the microbial community composition of rhizospheric soil from volcanic S. viridis. Compared with non-volcanic areas, volcanic soils have higher fungal alpha diversity and the absolute abundance of bacteria (16S gene copies) showed significant variation between the two successions (P |
---|---|
ISSN: | 0013-9351 1096-0953 1096-0953 |
DOI: | 10.1016/j.envres.2024.120262 |