Engineered Nanobodies Bind Bismuth, Indium and Gallium for Applications in Theranostics

Targeted theranostics heavily rely on metal isotopes conjugated to antibodies. Single-domain antibodies, known as nanobodies, are much smaller in size without compromising specificity and affinity. The conventional way of conjugating metals to nanobodies involves non-specific modification of amino a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2024-11, p.e202419455
Hauptverfasser: Ghosh, Pritha, Davies, Lani J, Nitsche, Christoph
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Targeted theranostics heavily rely on metal isotopes conjugated to antibodies. Single-domain antibodies, known as nanobodies, are much smaller in size without compromising specificity and affinity. The conventional way of conjugating metals to nanobodies involves non-specific modification of amino acid residues with bifunctional chelating agents. We demonstrate that mutagenesis of a single residue in a nanobody creates a triple cysteine motif that selectively binds bismuth which is, for example, used in targeted alpha therapy. Two mutations create a quadruple cysteine mutant specific for gallium and indium used in positron emission tomography and single-photon emission computed tomography, respectively. Labelling is quantitative within a few minutes. The metal nanobodies maintain structural integrity and stability over weeks, resist competition from endogenous metal binders like glutathione, and retain functionality.
ISSN:1433-7851
1521-3773
1521-3773
DOI:10.1002/anie.202419455