Hyperbolic Binary Neural Network

Binary neural network (BNN) converts full-precision weights and activations into their extreme 1-bit counterparts, making it particularly suitable for deployment on lightweight mobile devices. While BNNs are typically formulated as a constrained optimization problem and optimized in the binarized sp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2024-10, Vol.PP, p.1-9
Hauptverfasser: Chen, Jun, Xiang, Jingyang, Huang, Tianxin, Zhao, Xiangrui, Liu, Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue
container_start_page 1
container_title IEEE transaction on neural networks and learning systems
container_volume PP
creator Chen, Jun
Xiang, Jingyang
Huang, Tianxin
Zhao, Xiangrui
Liu, Yong
description Binary neural network (BNN) converts full-precision weights and activations into their extreme 1-bit counterparts, making it particularly suitable for deployment on lightweight mobile devices. While BNNs are typically formulated as a constrained optimization problem and optimized in the binarized space, general neural networks are formulated as an unconstrained optimization problem and optimized in the continuous space. This article introduces the hyperbolic BNN (HBNN) by leveraging the framework of hyperbolic geometry to optimize the constrained problem. Specifically, we transform the constrained problem in hyperbolic space into an unconstrained one in Euclidean space using the Riemannian exponential map. On the other hand, we also propose the exponential parametrization cluster (EPC) method, which, compared with the Riemannian exponential map, shrinks the segment domain based on a diffeomorphism. This approach increases the probability of weight flips, thereby maximizing the information gain in BNNs. Experimental results on CIFAR10, CIFAR100, and ImageNet classification datasets with VGGsmall, ResNet18, and ResNet34 models illustrate the superior performance of our HBNN over state-of-the-art methods.
doi_str_mv 10.1109/TNNLS.2024.3485115
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_3123072267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10740481</ieee_id><sourcerecordid>3123072267</sourcerecordid><originalsourceid>FETCH-LOGICAL-c205t-352d92f2aa2e2bb8e601f95534ba89b8440d749a2678a4c02867039310245cdf3</originalsourceid><addsrcrecordid>eNpNkEFLAzEQhYMottT-ARHZo5etk0mySY5a1AqlHqzgLWR3s7C67daki_Tfm9q1OJc3h_ceMx8hlxQmlIK-XS4W89cJAvIJ40pQKk7IEGmGKTKlTo-7fB-QcQgfECcDkXF9TgZMcwWS0iFJZruN83nb1EVyX6-t3yUL13nbRNl-t_7zgpxVtglu3OuIvD0-LKezdP7y9Dy9m6cFgtimTGCpsUJr0WGeK5cBrbQQjOdW6VxxDqXk2mImleUFoMokMM1ofEAUZcVG5ObQu_HtV-fC1qzqULimsWvXdsEwigwkxny04sFa-DYE7yqz8fUqnm4omD0c8wvH7OGYHk4MXff9Xb5y5THyhyIarg6G2jn3r1Fy4IqyH5OhZbE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123072267</pqid></control><display><type>article</type><title>Hyperbolic Binary Neural Network</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Jun ; Xiang, Jingyang ; Huang, Tianxin ; Zhao, Xiangrui ; Liu, Yong</creator><creatorcontrib>Chen, Jun ; Xiang, Jingyang ; Huang, Tianxin ; Zhao, Xiangrui ; Liu, Yong</creatorcontrib><description>Binary neural network (BNN) converts full-precision weights and activations into their extreme 1-bit counterparts, making it particularly suitable for deployment on lightweight mobile devices. While BNNs are typically formulated as a constrained optimization problem and optimized in the binarized space, general neural networks are formulated as an unconstrained optimization problem and optimized in the continuous space. This article introduces the hyperbolic BNN (HBNN) by leveraging the framework of hyperbolic geometry to optimize the constrained problem. Specifically, we transform the constrained problem in hyperbolic space into an unconstrained one in Euclidean space using the Riemannian exponential map. On the other hand, we also propose the exponential parametrization cluster (EPC) method, which, compared with the Riemannian exponential map, shrinks the segment domain based on a diffeomorphism. This approach increases the probability of weight flips, thereby maximizing the information gain in BNNs. Experimental results on CIFAR10, CIFAR100, and ImageNet classification datasets with VGGsmall, ResNet18, and ResNet34 models illustrate the superior performance of our HBNN over state-of-the-art methods.</description><identifier>ISSN: 2162-237X</identifier><identifier>ISSN: 2162-2388</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2024.3485115</identifier><identifier>PMID: 39480711</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Aerospace electronics ; Binary neural network (BNN) ; deep learning ; Geometry ; hyperbolic geometry ; Manifolds ; Mobile handsets ; model compression ; Neural networks ; Optimization ; Quantization (signal) ; Training ; Transforms ; Vectors</subject><ispartof>IEEE transaction on neural networks and learning systems, 2024-10, Vol.PP, p.1-9</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>junc@zju.edu.cn ; yongliu@iipc.zju.edu.cn ; 21725129@zju.edu.cn ; jingyangxiang@zju.edu.cn ; xiangruizhao@zju.edu.cn</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10740481$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10740481$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39480711$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Jun</creatorcontrib><creatorcontrib>Xiang, Jingyang</creatorcontrib><creatorcontrib>Huang, Tianxin</creatorcontrib><creatorcontrib>Zhao, Xiangrui</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><title>Hyperbolic Binary Neural Network</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>Binary neural network (BNN) converts full-precision weights and activations into their extreme 1-bit counterparts, making it particularly suitable for deployment on lightweight mobile devices. While BNNs are typically formulated as a constrained optimization problem and optimized in the binarized space, general neural networks are formulated as an unconstrained optimization problem and optimized in the continuous space. This article introduces the hyperbolic BNN (HBNN) by leveraging the framework of hyperbolic geometry to optimize the constrained problem. Specifically, we transform the constrained problem in hyperbolic space into an unconstrained one in Euclidean space using the Riemannian exponential map. On the other hand, we also propose the exponential parametrization cluster (EPC) method, which, compared with the Riemannian exponential map, shrinks the segment domain based on a diffeomorphism. This approach increases the probability of weight flips, thereby maximizing the information gain in BNNs. Experimental results on CIFAR10, CIFAR100, and ImageNet classification datasets with VGGsmall, ResNet18, and ResNet34 models illustrate the superior performance of our HBNN over state-of-the-art methods.</description><subject>Aerospace electronics</subject><subject>Binary neural network (BNN)</subject><subject>deep learning</subject><subject>Geometry</subject><subject>hyperbolic geometry</subject><subject>Manifolds</subject><subject>Mobile handsets</subject><subject>model compression</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Quantization (signal)</subject><subject>Training</subject><subject>Transforms</subject><subject>Vectors</subject><issn>2162-237X</issn><issn>2162-2388</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEFLAzEQhYMottT-ARHZo5etk0mySY5a1AqlHqzgLWR3s7C67daki_Tfm9q1OJc3h_ceMx8hlxQmlIK-XS4W89cJAvIJ40pQKk7IEGmGKTKlTo-7fB-QcQgfECcDkXF9TgZMcwWS0iFJZruN83nb1EVyX6-t3yUL13nbRNl-t_7zgpxVtglu3OuIvD0-LKezdP7y9Dy9m6cFgtimTGCpsUJr0WGeK5cBrbQQjOdW6VxxDqXk2mImleUFoMokMM1ofEAUZcVG5ObQu_HtV-fC1qzqULimsWvXdsEwigwkxny04sFa-DYE7yqz8fUqnm4omD0c8wvH7OGYHk4MXff9Xb5y5THyhyIarg6G2jn3r1Fy4IqyH5OhZbE</recordid><startdate>20241031</startdate><enddate>20241031</enddate><creator>Chen, Jun</creator><creator>Xiang, Jingyang</creator><creator>Huang, Tianxin</creator><creator>Zhao, Xiangrui</creator><creator>Liu, Yong</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/junc@zju.edu.cn</orcidid><orcidid>https://orcid.org/yongliu@iipc.zju.edu.cn</orcidid><orcidid>https://orcid.org/21725129@zju.edu.cn</orcidid><orcidid>https://orcid.org/jingyangxiang@zju.edu.cn</orcidid><orcidid>https://orcid.org/xiangruizhao@zju.edu.cn</orcidid></search><sort><creationdate>20241031</creationdate><title>Hyperbolic Binary Neural Network</title><author>Chen, Jun ; Xiang, Jingyang ; Huang, Tianxin ; Zhao, Xiangrui ; Liu, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c205t-352d92f2aa2e2bb8e601f95534ba89b8440d749a2678a4c02867039310245cdf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aerospace electronics</topic><topic>Binary neural network (BNN)</topic><topic>deep learning</topic><topic>Geometry</topic><topic>hyperbolic geometry</topic><topic>Manifolds</topic><topic>Mobile handsets</topic><topic>model compression</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Quantization (signal)</topic><topic>Training</topic><topic>Transforms</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Chen, Jun</creatorcontrib><creatorcontrib>Xiang, Jingyang</creatorcontrib><creatorcontrib>Huang, Tianxin</creatorcontrib><creatorcontrib>Zhao, Xiangrui</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Jun</au><au>Xiang, Jingyang</au><au>Huang, Tianxin</au><au>Zhao, Xiangrui</au><au>Liu, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyperbolic Binary Neural Network</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2024-10-31</date><risdate>2024</risdate><volume>PP</volume><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>2162-237X</issn><issn>2162-2388</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>Binary neural network (BNN) converts full-precision weights and activations into their extreme 1-bit counterparts, making it particularly suitable for deployment on lightweight mobile devices. While BNNs are typically formulated as a constrained optimization problem and optimized in the binarized space, general neural networks are formulated as an unconstrained optimization problem and optimized in the continuous space. This article introduces the hyperbolic BNN (HBNN) by leveraging the framework of hyperbolic geometry to optimize the constrained problem. Specifically, we transform the constrained problem in hyperbolic space into an unconstrained one in Euclidean space using the Riemannian exponential map. On the other hand, we also propose the exponential parametrization cluster (EPC) method, which, compared with the Riemannian exponential map, shrinks the segment domain based on a diffeomorphism. This approach increases the probability of weight flips, thereby maximizing the information gain in BNNs. Experimental results on CIFAR10, CIFAR100, and ImageNet classification datasets with VGGsmall, ResNet18, and ResNet34 models illustrate the superior performance of our HBNN over state-of-the-art methods.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>39480711</pmid><doi>10.1109/TNNLS.2024.3485115</doi><tpages>9</tpages><orcidid>https://orcid.org/junc@zju.edu.cn</orcidid><orcidid>https://orcid.org/yongliu@iipc.zju.edu.cn</orcidid><orcidid>https://orcid.org/21725129@zju.edu.cn</orcidid><orcidid>https://orcid.org/jingyangxiang@zju.edu.cn</orcidid><orcidid>https://orcid.org/xiangruizhao@zju.edu.cn</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2024-10, Vol.PP, p.1-9
issn 2162-237X
2162-2388
2162-2388
language eng
recordid cdi_proquest_miscellaneous_3123072267
source IEEE Electronic Library (IEL)
subjects Aerospace electronics
Binary neural network (BNN)
deep learning
Geometry
hyperbolic geometry
Manifolds
Mobile handsets
model compression
Neural networks
Optimization
Quantization (signal)
Training
Transforms
Vectors
title Hyperbolic Binary Neural Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T05%3A31%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyperbolic%20Binary%20Neural%20Network&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Chen,%20Jun&rft.date=2024-10-31&rft.volume=PP&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2024.3485115&rft_dat=%3Cproquest_RIE%3E3123072267%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3123072267&rft_id=info:pmid/39480711&rft_ieee_id=10740481&rfr_iscdi=true