Hyperbolic Binary Neural Network
Binary neural network (BNN) converts full-precision weights and activations into their extreme 1-bit counterparts, making it particularly suitable for deployment on lightweight mobile devices. While BNNs are typically formulated as a constrained optimization problem and optimized in the binarized sp...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2024-10, Vol.PP, p.1-9 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | PP |
creator | Chen, Jun Xiang, Jingyang Huang, Tianxin Zhao, Xiangrui Liu, Yong |
description | Binary neural network (BNN) converts full-precision weights and activations into their extreme 1-bit counterparts, making it particularly suitable for deployment on lightweight mobile devices. While BNNs are typically formulated as a constrained optimization problem and optimized in the binarized space, general neural networks are formulated as an unconstrained optimization problem and optimized in the continuous space. This article introduces the hyperbolic BNN (HBNN) by leveraging the framework of hyperbolic geometry to optimize the constrained problem. Specifically, we transform the constrained problem in hyperbolic space into an unconstrained one in Euclidean space using the Riemannian exponential map. On the other hand, we also propose the exponential parametrization cluster (EPC) method, which, compared with the Riemannian exponential map, shrinks the segment domain based on a diffeomorphism. This approach increases the probability of weight flips, thereby maximizing the information gain in BNNs. Experimental results on CIFAR10, CIFAR100, and ImageNet classification datasets with VGGsmall, ResNet18, and ResNet34 models illustrate the superior performance of our HBNN over state-of-the-art methods. |
doi_str_mv | 10.1109/TNNLS.2024.3485115 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_3123072267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10740481</ieee_id><sourcerecordid>3123072267</sourcerecordid><originalsourceid>FETCH-LOGICAL-c205t-352d92f2aa2e2bb8e601f95534ba89b8440d749a2678a4c02867039310245cdf3</originalsourceid><addsrcrecordid>eNpNkEFLAzEQhYMottT-ARHZo5etk0mySY5a1AqlHqzgLWR3s7C67daki_Tfm9q1OJc3h_ceMx8hlxQmlIK-XS4W89cJAvIJ40pQKk7IEGmGKTKlTo-7fB-QcQgfECcDkXF9TgZMcwWS0iFJZruN83nb1EVyX6-t3yUL13nbRNl-t_7zgpxVtglu3OuIvD0-LKezdP7y9Dy9m6cFgtimTGCpsUJr0WGeK5cBrbQQjOdW6VxxDqXk2mImleUFoMokMM1ofEAUZcVG5ObQu_HtV-fC1qzqULimsWvXdsEwigwkxny04sFa-DYE7yqz8fUqnm4omD0c8wvH7OGYHk4MXff9Xb5y5THyhyIarg6G2jn3r1Fy4IqyH5OhZbE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123072267</pqid></control><display><type>article</type><title>Hyperbolic Binary Neural Network</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Jun ; Xiang, Jingyang ; Huang, Tianxin ; Zhao, Xiangrui ; Liu, Yong</creator><creatorcontrib>Chen, Jun ; Xiang, Jingyang ; Huang, Tianxin ; Zhao, Xiangrui ; Liu, Yong</creatorcontrib><description>Binary neural network (BNN) converts full-precision weights and activations into their extreme 1-bit counterparts, making it particularly suitable for deployment on lightweight mobile devices. While BNNs are typically formulated as a constrained optimization problem and optimized in the binarized space, general neural networks are formulated as an unconstrained optimization problem and optimized in the continuous space. This article introduces the hyperbolic BNN (HBNN) by leveraging the framework of hyperbolic geometry to optimize the constrained problem. Specifically, we transform the constrained problem in hyperbolic space into an unconstrained one in Euclidean space using the Riemannian exponential map. On the other hand, we also propose the exponential parametrization cluster (EPC) method, which, compared with the Riemannian exponential map, shrinks the segment domain based on a diffeomorphism. This approach increases the probability of weight flips, thereby maximizing the information gain in BNNs. Experimental results on CIFAR10, CIFAR100, and ImageNet classification datasets with VGGsmall, ResNet18, and ResNet34 models illustrate the superior performance of our HBNN over state-of-the-art methods.</description><identifier>ISSN: 2162-237X</identifier><identifier>ISSN: 2162-2388</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2024.3485115</identifier><identifier>PMID: 39480711</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Aerospace electronics ; Binary neural network (BNN) ; deep learning ; Geometry ; hyperbolic geometry ; Manifolds ; Mobile handsets ; model compression ; Neural networks ; Optimization ; Quantization (signal) ; Training ; Transforms ; Vectors</subject><ispartof>IEEE transaction on neural networks and learning systems, 2024-10, Vol.PP, p.1-9</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>junc@zju.edu.cn ; yongliu@iipc.zju.edu.cn ; 21725129@zju.edu.cn ; jingyangxiang@zju.edu.cn ; xiangruizhao@zju.edu.cn</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10740481$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10740481$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39480711$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Jun</creatorcontrib><creatorcontrib>Xiang, Jingyang</creatorcontrib><creatorcontrib>Huang, Tianxin</creatorcontrib><creatorcontrib>Zhao, Xiangrui</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><title>Hyperbolic Binary Neural Network</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>Binary neural network (BNN) converts full-precision weights and activations into their extreme 1-bit counterparts, making it particularly suitable for deployment on lightweight mobile devices. While BNNs are typically formulated as a constrained optimization problem and optimized in the binarized space, general neural networks are formulated as an unconstrained optimization problem and optimized in the continuous space. This article introduces the hyperbolic BNN (HBNN) by leveraging the framework of hyperbolic geometry to optimize the constrained problem. Specifically, we transform the constrained problem in hyperbolic space into an unconstrained one in Euclidean space using the Riemannian exponential map. On the other hand, we also propose the exponential parametrization cluster (EPC) method, which, compared with the Riemannian exponential map, shrinks the segment domain based on a diffeomorphism. This approach increases the probability of weight flips, thereby maximizing the information gain in BNNs. Experimental results on CIFAR10, CIFAR100, and ImageNet classification datasets with VGGsmall, ResNet18, and ResNet34 models illustrate the superior performance of our HBNN over state-of-the-art methods.</description><subject>Aerospace electronics</subject><subject>Binary neural network (BNN)</subject><subject>deep learning</subject><subject>Geometry</subject><subject>hyperbolic geometry</subject><subject>Manifolds</subject><subject>Mobile handsets</subject><subject>model compression</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Quantization (signal)</subject><subject>Training</subject><subject>Transforms</subject><subject>Vectors</subject><issn>2162-237X</issn><issn>2162-2388</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEFLAzEQhYMottT-ARHZo5etk0mySY5a1AqlHqzgLWR3s7C67daki_Tfm9q1OJc3h_ceMx8hlxQmlIK-XS4W89cJAvIJ40pQKk7IEGmGKTKlTo-7fB-QcQgfECcDkXF9TgZMcwWS0iFJZruN83nb1EVyX6-t3yUL13nbRNl-t_7zgpxVtglu3OuIvD0-LKezdP7y9Dy9m6cFgtimTGCpsUJr0WGeK5cBrbQQjOdW6VxxDqXk2mImleUFoMokMM1ofEAUZcVG5ObQu_HtV-fC1qzqULimsWvXdsEwigwkxny04sFa-DYE7yqz8fUqnm4omD0c8wvH7OGYHk4MXff9Xb5y5THyhyIarg6G2jn3r1Fy4IqyH5OhZbE</recordid><startdate>20241031</startdate><enddate>20241031</enddate><creator>Chen, Jun</creator><creator>Xiang, Jingyang</creator><creator>Huang, Tianxin</creator><creator>Zhao, Xiangrui</creator><creator>Liu, Yong</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/junc@zju.edu.cn</orcidid><orcidid>https://orcid.org/yongliu@iipc.zju.edu.cn</orcidid><orcidid>https://orcid.org/21725129@zju.edu.cn</orcidid><orcidid>https://orcid.org/jingyangxiang@zju.edu.cn</orcidid><orcidid>https://orcid.org/xiangruizhao@zju.edu.cn</orcidid></search><sort><creationdate>20241031</creationdate><title>Hyperbolic Binary Neural Network</title><author>Chen, Jun ; Xiang, Jingyang ; Huang, Tianxin ; Zhao, Xiangrui ; Liu, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c205t-352d92f2aa2e2bb8e601f95534ba89b8440d749a2678a4c02867039310245cdf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aerospace electronics</topic><topic>Binary neural network (BNN)</topic><topic>deep learning</topic><topic>Geometry</topic><topic>hyperbolic geometry</topic><topic>Manifolds</topic><topic>Mobile handsets</topic><topic>model compression</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Quantization (signal)</topic><topic>Training</topic><topic>Transforms</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Chen, Jun</creatorcontrib><creatorcontrib>Xiang, Jingyang</creatorcontrib><creatorcontrib>Huang, Tianxin</creatorcontrib><creatorcontrib>Zhao, Xiangrui</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Jun</au><au>Xiang, Jingyang</au><au>Huang, Tianxin</au><au>Zhao, Xiangrui</au><au>Liu, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyperbolic Binary Neural Network</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2024-10-31</date><risdate>2024</risdate><volume>PP</volume><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>2162-237X</issn><issn>2162-2388</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>Binary neural network (BNN) converts full-precision weights and activations into their extreme 1-bit counterparts, making it particularly suitable for deployment on lightweight mobile devices. While BNNs are typically formulated as a constrained optimization problem and optimized in the binarized space, general neural networks are formulated as an unconstrained optimization problem and optimized in the continuous space. This article introduces the hyperbolic BNN (HBNN) by leveraging the framework of hyperbolic geometry to optimize the constrained problem. Specifically, we transform the constrained problem in hyperbolic space into an unconstrained one in Euclidean space using the Riemannian exponential map. On the other hand, we also propose the exponential parametrization cluster (EPC) method, which, compared with the Riemannian exponential map, shrinks the segment domain based on a diffeomorphism. This approach increases the probability of weight flips, thereby maximizing the information gain in BNNs. Experimental results on CIFAR10, CIFAR100, and ImageNet classification datasets with VGGsmall, ResNet18, and ResNet34 models illustrate the superior performance of our HBNN over state-of-the-art methods.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>39480711</pmid><doi>10.1109/TNNLS.2024.3485115</doi><tpages>9</tpages><orcidid>https://orcid.org/junc@zju.edu.cn</orcidid><orcidid>https://orcid.org/yongliu@iipc.zju.edu.cn</orcidid><orcidid>https://orcid.org/21725129@zju.edu.cn</orcidid><orcidid>https://orcid.org/jingyangxiang@zju.edu.cn</orcidid><orcidid>https://orcid.org/xiangruizhao@zju.edu.cn</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2162-237X |
ispartof | IEEE transaction on neural networks and learning systems, 2024-10, Vol.PP, p.1-9 |
issn | 2162-237X 2162-2388 2162-2388 |
language | eng |
recordid | cdi_proquest_miscellaneous_3123072267 |
source | IEEE Electronic Library (IEL) |
subjects | Aerospace electronics Binary neural network (BNN) deep learning Geometry hyperbolic geometry Manifolds Mobile handsets model compression Neural networks Optimization Quantization (signal) Training Transforms Vectors |
title | Hyperbolic Binary Neural Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T05%3A31%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyperbolic%20Binary%20Neural%20Network&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Chen,%20Jun&rft.date=2024-10-31&rft.volume=PP&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2024.3485115&rft_dat=%3Cproquest_RIE%3E3123072267%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3123072267&rft_id=info:pmid/39480711&rft_ieee_id=10740481&rfr_iscdi=true |