Next Generation of Solid Target Radionuclide Antibody Conjugates for Tumor Immuno‐Therapy
ABSTRACT Immune checkpoint therapy has emerged as an effective treatment option for various types of cancers. Key immune checkpoint molecules, such as cytotoxic T‐lymphocyte‐associated protein 4 (CTLA‐4), programmed cell death protein 1 (PD‐1), and lymphocyte activation gene 3 (LAG‐3), have become p...
Gespeichert in:
Veröffentlicht in: | Journal of labelled compounds & radiopharmaceuticals 2024-10, Vol.67 (12-13), p.396-409 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 409 |
---|---|
container_issue | 12-13 |
container_start_page | 396 |
container_title | Journal of labelled compounds & radiopharmaceuticals |
container_volume | 67 |
creator | Hou, Xingguo Kong, Xiangxing Yao, Yuan Liu, Song Ren, Ya'nan Hu, Muye Wang, Zilei Zhu, Hua Yang, Zhi |
description | ABSTRACT
Immune checkpoint therapy has emerged as an effective treatment option for various types of cancers. Key immune checkpoint molecules, such as cytotoxic T‐lymphocyte‐associated protein 4 (CTLA‐4), programmed cell death protein 1 (PD‐1), and lymphocyte activation gene 3 (LAG‐3), have become pivotal targets in cancer immunotherapy. Antibodies designed to inhibit these molecules have demonstrated significant clinical efficacy. Nevertheless, the ability to monitor changes in the immune status of tumors and predict treatment response remains limited. Conventional methods, such as assessing lymphocytes in peripheral blood or conducting tumor biopsies, are inadequate for providing real‐time, spatial information about T‐cell distributions within heterogeneous tumors. Positron emission tomography (PET) using T‐cell specific probes represents a promising and noninvasive approach to monitor both systemic and intratumoral immune changes during treatment. This technique holds substantial clinical significance and potential utility. In this paper, we review the applications of PET probes that target immune cells in molecular imaging.
The three solid target radio nuclides and imaging of solid target nuclide‐labeled probes. |
doi_str_mv | 10.1002/jlcr.4124 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3122646308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3122646308</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2434-491539f5655e384f62a009baaec4870432764766195cbafab93838a5a08581643</originalsourceid><addsrcrecordid>eNp1kEFLwzAYhoMobk4P_gEJeNFDt6RJs_Q4is7JUJj15KGkbTpb2mYmLdqbP8Hf6C8xddOD4OX74P0eHj5eAE4xGmOE3ElRJnpMsUv3wBAj33cwoXQfDBFhrkM5IgNwZEyBkL1ReggGxLcpxmQInu7kWwPnspZaNLmqocrggyrzFIZCr2UDVyK1cZvYSMJZ3eSxSjsYqLpo16KRBmZKw7Ct7FxUVVurz_eP8NnaNt0xOMhEaeTJbo_A4_VVGNw4y_v5IpgtncSlhDrUxx7xM495niScZswV9tFYCJlQPkWUuFNGp4xh30tikYnYJ5xw4QnEPY4ZJSNwsfVutHpppWmiKjeJLEtRS9WaiGDXZZQRxC16_gctVKtr-11P-XxKOPIsdbmlEq2M0TKLNjqvhO4ijKK-8ahvPOobt-zZztjGlUx_yZ-KLTDZAq95Kbv_TdHtMlh9K78AnC-J4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3129873805</pqid></control><display><type>article</type><title>Next Generation of Solid Target Radionuclide Antibody Conjugates for Tumor Immuno‐Therapy</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hou, Xingguo ; Kong, Xiangxing ; Yao, Yuan ; Liu, Song ; Ren, Ya'nan ; Hu, Muye ; Wang, Zilei ; Zhu, Hua ; Yang, Zhi</creator><creatorcontrib>Hou, Xingguo ; Kong, Xiangxing ; Yao, Yuan ; Liu, Song ; Ren, Ya'nan ; Hu, Muye ; Wang, Zilei ; Zhu, Hua ; Yang, Zhi</creatorcontrib><description>ABSTRACT
Immune checkpoint therapy has emerged as an effective treatment option for various types of cancers. Key immune checkpoint molecules, such as cytotoxic T‐lymphocyte‐associated protein 4 (CTLA‐4), programmed cell death protein 1 (PD‐1), and lymphocyte activation gene 3 (LAG‐3), have become pivotal targets in cancer immunotherapy. Antibodies designed to inhibit these molecules have demonstrated significant clinical efficacy. Nevertheless, the ability to monitor changes in the immune status of tumors and predict treatment response remains limited. Conventional methods, such as assessing lymphocytes in peripheral blood or conducting tumor biopsies, are inadequate for providing real‐time, spatial information about T‐cell distributions within heterogeneous tumors. Positron emission tomography (PET) using T‐cell specific probes represents a promising and noninvasive approach to monitor both systemic and intratumoral immune changes during treatment. This technique holds substantial clinical significance and potential utility. In this paper, we review the applications of PET probes that target immune cells in molecular imaging.
The three solid target radio nuclides and imaging of solid target nuclide‐labeled probes.</description><identifier>ISSN: 0362-4803</identifier><identifier>ISSN: 1099-1344</identifier><identifier>EISSN: 1099-1344</identifier><identifier>DOI: 10.1002/jlcr.4124</identifier><identifier>PMID: 39480113</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Animals ; Antibodies ; Apoptosis ; Biopsy ; Cancer ; Cancer immunotherapy ; Cell activation ; Cell death ; copper‐64 ; Cytotoxicity ; Effectiveness ; Humans ; Immune checkpoint ; immune checkpoint therapy ; Immune status ; Immune system ; Immunoconjugates - chemistry ; Immunoconjugates - therapeutic use ; immunotherapy ; Immunotherapy - methods ; iodine‐124 ; isotope labeling ; Lymphocytes ; Neoplasms - diagnostic imaging ; Neoplasms - immunology ; Neoplasms - therapy ; noninvasive monitoring ; PD-1 protein ; Peripheral blood ; Positron emission ; Positron emission tomography ; Positron-Emission Tomography - methods ; Probes ; Proteins ; Radioisotopes ; Radioisotopes - chemistry ; Radioisotopes - therapeutic use ; solid target ; Spatial data ; T cells ; Tumors ; zirconium‐89</subject><ispartof>Journal of labelled compounds & radiopharmaceuticals, 2024-10, Vol.67 (12-13), p.396-409</ispartof><rights>2024 John Wiley & Sons Ltd.</rights><rights>2024 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2434-491539f5655e384f62a009baaec4870432764766195cbafab93838a5a08581643</cites><orcidid>0000-0002-4198-5809 ; 0000-0003-2084-5193</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjlcr.4124$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjlcr.4124$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39480113$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hou, Xingguo</creatorcontrib><creatorcontrib>Kong, Xiangxing</creatorcontrib><creatorcontrib>Yao, Yuan</creatorcontrib><creatorcontrib>Liu, Song</creatorcontrib><creatorcontrib>Ren, Ya'nan</creatorcontrib><creatorcontrib>Hu, Muye</creatorcontrib><creatorcontrib>Wang, Zilei</creatorcontrib><creatorcontrib>Zhu, Hua</creatorcontrib><creatorcontrib>Yang, Zhi</creatorcontrib><title>Next Generation of Solid Target Radionuclide Antibody Conjugates for Tumor Immuno‐Therapy</title><title>Journal of labelled compounds & radiopharmaceuticals</title><addtitle>J Labelled Comp Radiopharm</addtitle><description>ABSTRACT
Immune checkpoint therapy has emerged as an effective treatment option for various types of cancers. Key immune checkpoint molecules, such as cytotoxic T‐lymphocyte‐associated protein 4 (CTLA‐4), programmed cell death protein 1 (PD‐1), and lymphocyte activation gene 3 (LAG‐3), have become pivotal targets in cancer immunotherapy. Antibodies designed to inhibit these molecules have demonstrated significant clinical efficacy. Nevertheless, the ability to monitor changes in the immune status of tumors and predict treatment response remains limited. Conventional methods, such as assessing lymphocytes in peripheral blood or conducting tumor biopsies, are inadequate for providing real‐time, spatial information about T‐cell distributions within heterogeneous tumors. Positron emission tomography (PET) using T‐cell specific probes represents a promising and noninvasive approach to monitor both systemic and intratumoral immune changes during treatment. This technique holds substantial clinical significance and potential utility. In this paper, we review the applications of PET probes that target immune cells in molecular imaging.
The three solid target radio nuclides and imaging of solid target nuclide‐labeled probes.</description><subject>Animals</subject><subject>Antibodies</subject><subject>Apoptosis</subject><subject>Biopsy</subject><subject>Cancer</subject><subject>Cancer immunotherapy</subject><subject>Cell activation</subject><subject>Cell death</subject><subject>copper‐64</subject><subject>Cytotoxicity</subject><subject>Effectiveness</subject><subject>Humans</subject><subject>Immune checkpoint</subject><subject>immune checkpoint therapy</subject><subject>Immune status</subject><subject>Immune system</subject><subject>Immunoconjugates - chemistry</subject><subject>Immunoconjugates - therapeutic use</subject><subject>immunotherapy</subject><subject>Immunotherapy - methods</subject><subject>iodine‐124</subject><subject>isotope labeling</subject><subject>Lymphocytes</subject><subject>Neoplasms - diagnostic imaging</subject><subject>Neoplasms - immunology</subject><subject>Neoplasms - therapy</subject><subject>noninvasive monitoring</subject><subject>PD-1 protein</subject><subject>Peripheral blood</subject><subject>Positron emission</subject><subject>Positron emission tomography</subject><subject>Positron-Emission Tomography - methods</subject><subject>Probes</subject><subject>Proteins</subject><subject>Radioisotopes</subject><subject>Radioisotopes - chemistry</subject><subject>Radioisotopes - therapeutic use</subject><subject>solid target</subject><subject>Spatial data</subject><subject>T cells</subject><subject>Tumors</subject><subject>zirconium‐89</subject><issn>0362-4803</issn><issn>1099-1344</issn><issn>1099-1344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kEFLwzAYhoMobk4P_gEJeNFDt6RJs_Q4is7JUJj15KGkbTpb2mYmLdqbP8Hf6C8xddOD4OX74P0eHj5eAE4xGmOE3ElRJnpMsUv3wBAj33cwoXQfDBFhrkM5IgNwZEyBkL1ReggGxLcpxmQInu7kWwPnspZaNLmqocrggyrzFIZCr2UDVyK1cZvYSMJZ3eSxSjsYqLpo16KRBmZKw7Ct7FxUVVurz_eP8NnaNt0xOMhEaeTJbo_A4_VVGNw4y_v5IpgtncSlhDrUxx7xM495niScZswV9tFYCJlQPkWUuFNGp4xh30tikYnYJ5xw4QnEPY4ZJSNwsfVutHpppWmiKjeJLEtRS9WaiGDXZZQRxC16_gctVKtr-11P-XxKOPIsdbmlEq2M0TKLNjqvhO4ijKK-8ahvPOobt-zZztjGlUx_yZ-KLTDZAq95Kbv_TdHtMlh9K78AnC-J4w</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Hou, Xingguo</creator><creator>Kong, Xiangxing</creator><creator>Yao, Yuan</creator><creator>Liu, Song</creator><creator>Ren, Ya'nan</creator><creator>Hu, Muye</creator><creator>Wang, Zilei</creator><creator>Zhu, Hua</creator><creator>Yang, Zhi</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4198-5809</orcidid><orcidid>https://orcid.org/0000-0003-2084-5193</orcidid></search><sort><creationdate>202410</creationdate><title>Next Generation of Solid Target Radionuclide Antibody Conjugates for Tumor Immuno‐Therapy</title><author>Hou, Xingguo ; Kong, Xiangxing ; Yao, Yuan ; Liu, Song ; Ren, Ya'nan ; Hu, Muye ; Wang, Zilei ; Zhu, Hua ; Yang, Zhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2434-491539f5655e384f62a009baaec4870432764766195cbafab93838a5a08581643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Antibodies</topic><topic>Apoptosis</topic><topic>Biopsy</topic><topic>Cancer</topic><topic>Cancer immunotherapy</topic><topic>Cell activation</topic><topic>Cell death</topic><topic>copper‐64</topic><topic>Cytotoxicity</topic><topic>Effectiveness</topic><topic>Humans</topic><topic>Immune checkpoint</topic><topic>immune checkpoint therapy</topic><topic>Immune status</topic><topic>Immune system</topic><topic>Immunoconjugates - chemistry</topic><topic>Immunoconjugates - therapeutic use</topic><topic>immunotherapy</topic><topic>Immunotherapy - methods</topic><topic>iodine‐124</topic><topic>isotope labeling</topic><topic>Lymphocytes</topic><topic>Neoplasms - diagnostic imaging</topic><topic>Neoplasms - immunology</topic><topic>Neoplasms - therapy</topic><topic>noninvasive monitoring</topic><topic>PD-1 protein</topic><topic>Peripheral blood</topic><topic>Positron emission</topic><topic>Positron emission tomography</topic><topic>Positron-Emission Tomography - methods</topic><topic>Probes</topic><topic>Proteins</topic><topic>Radioisotopes</topic><topic>Radioisotopes - chemistry</topic><topic>Radioisotopes - therapeutic use</topic><topic>solid target</topic><topic>Spatial data</topic><topic>T cells</topic><topic>Tumors</topic><topic>zirconium‐89</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hou, Xingguo</creatorcontrib><creatorcontrib>Kong, Xiangxing</creatorcontrib><creatorcontrib>Yao, Yuan</creatorcontrib><creatorcontrib>Liu, Song</creatorcontrib><creatorcontrib>Ren, Ya'nan</creatorcontrib><creatorcontrib>Hu, Muye</creatorcontrib><creatorcontrib>Wang, Zilei</creatorcontrib><creatorcontrib>Zhu, Hua</creatorcontrib><creatorcontrib>Yang, Zhi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of labelled compounds & radiopharmaceuticals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hou, Xingguo</au><au>Kong, Xiangxing</au><au>Yao, Yuan</au><au>Liu, Song</au><au>Ren, Ya'nan</au><au>Hu, Muye</au><au>Wang, Zilei</au><au>Zhu, Hua</au><au>Yang, Zhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Next Generation of Solid Target Radionuclide Antibody Conjugates for Tumor Immuno‐Therapy</atitle><jtitle>Journal of labelled compounds & radiopharmaceuticals</jtitle><addtitle>J Labelled Comp Radiopharm</addtitle><date>2024-10</date><risdate>2024</risdate><volume>67</volume><issue>12-13</issue><spage>396</spage><epage>409</epage><pages>396-409</pages><issn>0362-4803</issn><issn>1099-1344</issn><eissn>1099-1344</eissn><abstract>ABSTRACT
Immune checkpoint therapy has emerged as an effective treatment option for various types of cancers. Key immune checkpoint molecules, such as cytotoxic T‐lymphocyte‐associated protein 4 (CTLA‐4), programmed cell death protein 1 (PD‐1), and lymphocyte activation gene 3 (LAG‐3), have become pivotal targets in cancer immunotherapy. Antibodies designed to inhibit these molecules have demonstrated significant clinical efficacy. Nevertheless, the ability to monitor changes in the immune status of tumors and predict treatment response remains limited. Conventional methods, such as assessing lymphocytes in peripheral blood or conducting tumor biopsies, are inadequate for providing real‐time, spatial information about T‐cell distributions within heterogeneous tumors. Positron emission tomography (PET) using T‐cell specific probes represents a promising and noninvasive approach to monitor both systemic and intratumoral immune changes during treatment. This technique holds substantial clinical significance and potential utility. In this paper, we review the applications of PET probes that target immune cells in molecular imaging.
The three solid target radio nuclides and imaging of solid target nuclide‐labeled probes.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39480113</pmid><doi>10.1002/jlcr.4124</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4198-5809</orcidid><orcidid>https://orcid.org/0000-0003-2084-5193</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0362-4803 |
ispartof | Journal of labelled compounds & radiopharmaceuticals, 2024-10, Vol.67 (12-13), p.396-409 |
issn | 0362-4803 1099-1344 1099-1344 |
language | eng |
recordid | cdi_proquest_miscellaneous_3122646308 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Animals Antibodies Apoptosis Biopsy Cancer Cancer immunotherapy Cell activation Cell death copper‐64 Cytotoxicity Effectiveness Humans Immune checkpoint immune checkpoint therapy Immune status Immune system Immunoconjugates - chemistry Immunoconjugates - therapeutic use immunotherapy Immunotherapy - methods iodine‐124 isotope labeling Lymphocytes Neoplasms - diagnostic imaging Neoplasms - immunology Neoplasms - therapy noninvasive monitoring PD-1 protein Peripheral blood Positron emission Positron emission tomography Positron-Emission Tomography - methods Probes Proteins Radioisotopes Radioisotopes - chemistry Radioisotopes - therapeutic use solid target Spatial data T cells Tumors zirconium‐89 |
title | Next Generation of Solid Target Radionuclide Antibody Conjugates for Tumor Immuno‐Therapy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A40%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Next%20Generation%20of%20Solid%20Target%20Radionuclide%20Antibody%20Conjugates%20for%20Tumor%20Immuno%E2%80%90Therapy&rft.jtitle=Journal%20of%20labelled%20compounds%20&%20radiopharmaceuticals&rft.au=Hou,%20Xingguo&rft.date=2024-10&rft.volume=67&rft.issue=12-13&rft.spage=396&rft.epage=409&rft.pages=396-409&rft.issn=0362-4803&rft.eissn=1099-1344&rft_id=info:doi/10.1002/jlcr.4124&rft_dat=%3Cproquest_cross%3E3122646308%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3129873805&rft_id=info:pmid/39480113&rfr_iscdi=true |