Hydrogen Spillover‐Bridged Interfacial Water Activation of WCx and Hydrogen Recombination of Ru as Dual Active Sites for Accelerating Electrocatalytic Hydrogen Evolution

Tungsten carbide (WCx) is a promising alternative to platinum catalysts for hydrogen evolution reaction (HER). However, strong tungsten–hydrogen bond hinders hydrogen desorption while favoring H+ reduction, thus limiting HER kinetics. Inspired by the phenomenon of hydrogen spillover in heterogeneous...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2025-01, Vol.21 (1), p.e2406022-n/a
Hauptverfasser: Zhao, Jiamin, Kou, Meimei, Yuan, Qing, Yuan, Ying, Zhao, Jinsheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page e2406022
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 21
creator Zhao, Jiamin
Kou, Meimei
Yuan, Qing
Yuan, Ying
Zhao, Jinsheng
description Tungsten carbide (WCx) is a promising alternative to platinum catalysts for hydrogen evolution reaction (HER). However, strong tungsten–hydrogen bond hinders hydrogen desorption while favoring H+ reduction, thus limiting HER kinetics. Inspired by the phenomenon of hydrogen spillover in heterogeneous catalysis, a ruthenium (Ru) doped‐driven activated hydrogen migration from WCx surface to Ru is reported. This approach achieved high activity with an ultralow overpotential of 9.0 mV at 10 mA·cm−2 and superior stability at an industrial‐grade current density of 1.0 A·cm−2 @ 1.65 V. In situ attenuated total reflectance surface‐enhanced infrared absorption spectroscopy (ATR‐SEIRAS) and operando electrochemical impedance spectra revealed that this exceptional hydrogen production—which surpasses that of previously reported Pt/C catalysts—is attributable to the outstanding ability of WCx to induce water dissociation and hydrogen spillover from WCx to Ru surface. During the HER process, the rigid interfacial water network negatively affected the HER efficiency under alkaline conditions. The WCx sites disrupted this rigid structure, facilitating the contact between activated hydrogen (H*) and WCx sites. Subsequently, H* migrates to Ru surface, where hydrogen recombination occurs to produce H2. This work paves a new avenue for the construction of coupled catalysts at the atomic scale to facilitate HER electrocatalysis. Inspired by the phenomenon of hydrogen spillover in heterogeneous catalysis, the well‐designed Ru/WCx not only improved the H2O dissociation process by facilitating contact between activated hydrogen and WCx sites, but also increased hydrogen production via hydrogen spillover on Ru sites. The optimal Ru/WCx demonstrates ultra‐high HER performance with an overpotential of only 9 mV at 10 mA·cm−2.
doi_str_mv 10.1002/smll.202406022
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_3122646177</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3122646177</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1962-4dd6673eac4d4f0d031706760476f5952e0c357004ec24c5fc3b263dccfd6c123</originalsourceid><addsrcrecordid>eNpdkc9KAzEQhxdRsFavngNevLTm32bdY63VFiqCVTwuMZktkXRTk91qbz6C7-Fb-SSmVlbwNDPw5WMmvyQ5JrhPMKZnYWFtn2LKscCU7iQdIgjriXOa77Y9wfvJQQjPGDNCedZJPsdr7d0cKjRbGmvdCvzX-8eFN3oOGk2qGnwplZEWPcrYo4GqzUrWxlXIlehx-IZkpVEruQPlFk-maom7BsmALpso-HkKaGZqCKh0G5cCCz6y1RyNLKjaOyVrade1UX_O0crZZuM7TPZKaQMc_dZu8nA1uh-Oe9Pb68lwMO0tSS5oj2stRMZAKq55iXU8NcMiE5hnokzzlAJWLM0w5qAoV2mp2BMVTCtVaqEIZd3kdOtdevfSQKiLhQlxVSsrcE0o4tdRwQXJsoie_EOfXeOruF2kUsrT_JyRSOVb6tVYWBdLbxbSrwuCi01wxSa4og2umN1Mp-3EvgGU45JP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3152459831</pqid></control><display><type>article</type><title>Hydrogen Spillover‐Bridged Interfacial Water Activation of WCx and Hydrogen Recombination of Ru as Dual Active Sites for Accelerating Electrocatalytic Hydrogen Evolution</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhao, Jiamin ; Kou, Meimei ; Yuan, Qing ; Yuan, Ying ; Zhao, Jinsheng</creator><creatorcontrib>Zhao, Jiamin ; Kou, Meimei ; Yuan, Qing ; Yuan, Ying ; Zhao, Jinsheng</creatorcontrib><description>Tungsten carbide (WCx) is a promising alternative to platinum catalysts for hydrogen evolution reaction (HER). However, strong tungsten–hydrogen bond hinders hydrogen desorption while favoring H+ reduction, thus limiting HER kinetics. Inspired by the phenomenon of hydrogen spillover in heterogeneous catalysis, a ruthenium (Ru) doped‐driven activated hydrogen migration from WCx surface to Ru is reported. This approach achieved high activity with an ultralow overpotential of 9.0 mV at 10 mA·cm−2 and superior stability at an industrial‐grade current density of 1.0 A·cm−2 @ 1.65 V. In situ attenuated total reflectance surface‐enhanced infrared absorption spectroscopy (ATR‐SEIRAS) and operando electrochemical impedance spectra revealed that this exceptional hydrogen production—which surpasses that of previously reported Pt/C catalysts—is attributable to the outstanding ability of WCx to induce water dissociation and hydrogen spillover from WCx to Ru surface. During the HER process, the rigid interfacial water network negatively affected the HER efficiency under alkaline conditions. The WCx sites disrupted this rigid structure, facilitating the contact between activated hydrogen (H*) and WCx sites. Subsequently, H* migrates to Ru surface, where hydrogen recombination occurs to produce H2. This work paves a new avenue for the construction of coupled catalysts at the atomic scale to facilitate HER electrocatalysis. Inspired by the phenomenon of hydrogen spillover in heterogeneous catalysis, the well‐designed Ru/WCx not only improved the H2O dissociation process by facilitating contact between activated hydrogen and WCx sites, but also increased hydrogen production via hydrogen spillover on Ru sites. The optimal Ru/WCx demonstrates ultra‐high HER performance with an overpotential of only 9 mV at 10 mA·cm−2.</description><identifier>ISSN: 1613-6810</identifier><identifier>ISSN: 1613-6829</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202406022</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Absorption spectroscopy ; Catalysis ; Catalysts ; electrocatalysis ; Electrochemical impedance spectroscopy ; Hydrogen ; Hydrogen bonds ; hydrogen evolution reaction ; Hydrogen evolution reactions ; Hydrogen production ; Hydrogen recombinations ; hydrogen spillover ; Infrared absorption ; Infrared spectra ; Reaction kinetics ; Rigid structures ; Ru based catalyst ; Ruthenium ; Spectrum analysis ; Tungsten carbide</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2025-01, Vol.21 (1), p.e2406022-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2025 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7615-9865</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202406022$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202406022$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Zhao, Jiamin</creatorcontrib><creatorcontrib>Kou, Meimei</creatorcontrib><creatorcontrib>Yuan, Qing</creatorcontrib><creatorcontrib>Yuan, Ying</creatorcontrib><creatorcontrib>Zhao, Jinsheng</creatorcontrib><title>Hydrogen Spillover‐Bridged Interfacial Water Activation of WCx and Hydrogen Recombination of Ru as Dual Active Sites for Accelerating Electrocatalytic Hydrogen Evolution</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><description>Tungsten carbide (WCx) is a promising alternative to platinum catalysts for hydrogen evolution reaction (HER). However, strong tungsten–hydrogen bond hinders hydrogen desorption while favoring H+ reduction, thus limiting HER kinetics. Inspired by the phenomenon of hydrogen spillover in heterogeneous catalysis, a ruthenium (Ru) doped‐driven activated hydrogen migration from WCx surface to Ru is reported. This approach achieved high activity with an ultralow overpotential of 9.0 mV at 10 mA·cm−2 and superior stability at an industrial‐grade current density of 1.0 A·cm−2 @ 1.65 V. In situ attenuated total reflectance surface‐enhanced infrared absorption spectroscopy (ATR‐SEIRAS) and operando electrochemical impedance spectra revealed that this exceptional hydrogen production—which surpasses that of previously reported Pt/C catalysts—is attributable to the outstanding ability of WCx to induce water dissociation and hydrogen spillover from WCx to Ru surface. During the HER process, the rigid interfacial water network negatively affected the HER efficiency under alkaline conditions. The WCx sites disrupted this rigid structure, facilitating the contact between activated hydrogen (H*) and WCx sites. Subsequently, H* migrates to Ru surface, where hydrogen recombination occurs to produce H2. This work paves a new avenue for the construction of coupled catalysts at the atomic scale to facilitate HER electrocatalysis. Inspired by the phenomenon of hydrogen spillover in heterogeneous catalysis, the well‐designed Ru/WCx not only improved the H2O dissociation process by facilitating contact between activated hydrogen and WCx sites, but also increased hydrogen production via hydrogen spillover on Ru sites. The optimal Ru/WCx demonstrates ultra‐high HER performance with an overpotential of only 9 mV at 10 mA·cm−2.</description><subject>Absorption spectroscopy</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>electrocatalysis</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Hydrogen</subject><subject>Hydrogen bonds</subject><subject>hydrogen evolution reaction</subject><subject>Hydrogen evolution reactions</subject><subject>Hydrogen production</subject><subject>Hydrogen recombinations</subject><subject>hydrogen spillover</subject><subject>Infrared absorption</subject><subject>Infrared spectra</subject><subject>Reaction kinetics</subject><subject>Rigid structures</subject><subject>Ru based catalyst</subject><subject>Ruthenium</subject><subject>Spectrum analysis</subject><subject>Tungsten carbide</subject><issn>1613-6810</issn><issn>1613-6829</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNpdkc9KAzEQhxdRsFavngNevLTm32bdY63VFiqCVTwuMZktkXRTk91qbz6C7-Fb-SSmVlbwNDPw5WMmvyQ5JrhPMKZnYWFtn2LKscCU7iQdIgjriXOa77Y9wfvJQQjPGDNCedZJPsdr7d0cKjRbGmvdCvzX-8eFN3oOGk2qGnwplZEWPcrYo4GqzUrWxlXIlehx-IZkpVEruQPlFk-maom7BsmALpso-HkKaGZqCKh0G5cCCz6y1RyNLKjaOyVrade1UX_O0crZZuM7TPZKaQMc_dZu8nA1uh-Oe9Pb68lwMO0tSS5oj2stRMZAKq55iXU8NcMiE5hnokzzlAJWLM0w5qAoV2mp2BMVTCtVaqEIZd3kdOtdevfSQKiLhQlxVSsrcE0o4tdRwQXJsoie_EOfXeOruF2kUsrT_JyRSOVb6tVYWBdLbxbSrwuCi01wxSa4og2umN1Mp-3EvgGU45JP</recordid><startdate>20250101</startdate><enddate>20250101</enddate><creator>Zhao, Jiamin</creator><creator>Kou, Meimei</creator><creator>Yuan, Qing</creator><creator>Yuan, Ying</creator><creator>Zhao, Jinsheng</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7615-9865</orcidid></search><sort><creationdate>20250101</creationdate><title>Hydrogen Spillover‐Bridged Interfacial Water Activation of WCx and Hydrogen Recombination of Ru as Dual Active Sites for Accelerating Electrocatalytic Hydrogen Evolution</title><author>Zhao, Jiamin ; Kou, Meimei ; Yuan, Qing ; Yuan, Ying ; Zhao, Jinsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1962-4dd6673eac4d4f0d031706760476f5952e0c357004ec24c5fc3b263dccfd6c123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Absorption spectroscopy</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>electrocatalysis</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Hydrogen</topic><topic>Hydrogen bonds</topic><topic>hydrogen evolution reaction</topic><topic>Hydrogen evolution reactions</topic><topic>Hydrogen production</topic><topic>Hydrogen recombinations</topic><topic>hydrogen spillover</topic><topic>Infrared absorption</topic><topic>Infrared spectra</topic><topic>Reaction kinetics</topic><topic>Rigid structures</topic><topic>Ru based catalyst</topic><topic>Ruthenium</topic><topic>Spectrum analysis</topic><topic>Tungsten carbide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Jiamin</creatorcontrib><creatorcontrib>Kou, Meimei</creatorcontrib><creatorcontrib>Yuan, Qing</creatorcontrib><creatorcontrib>Yuan, Ying</creatorcontrib><creatorcontrib>Zhao, Jinsheng</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Jiamin</au><au>Kou, Meimei</au><au>Yuan, Qing</au><au>Yuan, Ying</au><au>Zhao, Jinsheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogen Spillover‐Bridged Interfacial Water Activation of WCx and Hydrogen Recombination of Ru as Dual Active Sites for Accelerating Electrocatalytic Hydrogen Evolution</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><date>2025-01-01</date><risdate>2025</risdate><volume>21</volume><issue>1</issue><spage>e2406022</spage><epage>n/a</epage><pages>e2406022-n/a</pages><issn>1613-6810</issn><issn>1613-6829</issn><eissn>1613-6829</eissn><abstract>Tungsten carbide (WCx) is a promising alternative to platinum catalysts for hydrogen evolution reaction (HER). However, strong tungsten–hydrogen bond hinders hydrogen desorption while favoring H+ reduction, thus limiting HER kinetics. Inspired by the phenomenon of hydrogen spillover in heterogeneous catalysis, a ruthenium (Ru) doped‐driven activated hydrogen migration from WCx surface to Ru is reported. This approach achieved high activity with an ultralow overpotential of 9.0 mV at 10 mA·cm−2 and superior stability at an industrial‐grade current density of 1.0 A·cm−2 @ 1.65 V. In situ attenuated total reflectance surface‐enhanced infrared absorption spectroscopy (ATR‐SEIRAS) and operando electrochemical impedance spectra revealed that this exceptional hydrogen production—which surpasses that of previously reported Pt/C catalysts—is attributable to the outstanding ability of WCx to induce water dissociation and hydrogen spillover from WCx to Ru surface. During the HER process, the rigid interfacial water network negatively affected the HER efficiency under alkaline conditions. The WCx sites disrupted this rigid structure, facilitating the contact between activated hydrogen (H*) and WCx sites. Subsequently, H* migrates to Ru surface, where hydrogen recombination occurs to produce H2. This work paves a new avenue for the construction of coupled catalysts at the atomic scale to facilitate HER electrocatalysis. Inspired by the phenomenon of hydrogen spillover in heterogeneous catalysis, the well‐designed Ru/WCx not only improved the H2O dissociation process by facilitating contact between activated hydrogen and WCx sites, but also increased hydrogen production via hydrogen spillover on Ru sites. The optimal Ru/WCx demonstrates ultra‐high HER performance with an overpotential of only 9 mV at 10 mA·cm−2.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/smll.202406022</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7615-9865</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2025-01, Vol.21 (1), p.e2406022-n/a
issn 1613-6810
1613-6829
1613-6829
language eng
recordid cdi_proquest_miscellaneous_3122646177
source Wiley Online Library Journals Frontfile Complete
subjects Absorption spectroscopy
Catalysis
Catalysts
electrocatalysis
Electrochemical impedance spectroscopy
Hydrogen
Hydrogen bonds
hydrogen evolution reaction
Hydrogen evolution reactions
Hydrogen production
Hydrogen recombinations
hydrogen spillover
Infrared absorption
Infrared spectra
Reaction kinetics
Rigid structures
Ru based catalyst
Ruthenium
Spectrum analysis
Tungsten carbide
title Hydrogen Spillover‐Bridged Interfacial Water Activation of WCx and Hydrogen Recombination of Ru as Dual Active Sites for Accelerating Electrocatalytic Hydrogen Evolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T10%3A09%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogen%20Spillover%E2%80%90Bridged%20Interfacial%20Water%20Activation%20of%20WCx%20and%20Hydrogen%20Recombination%20of%20Ru%20as%20Dual%20Active%20Sites%20for%20Accelerating%20Electrocatalytic%20Hydrogen%20Evolution&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Zhao,%20Jiamin&rft.date=2025-01-01&rft.volume=21&rft.issue=1&rft.spage=e2406022&rft.epage=n/a&rft.pages=e2406022-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202406022&rft_dat=%3Cproquest_wiley%3E3122646177%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3152459831&rft_id=info:pmid/&rfr_iscdi=true