Automated detection and labeling of posterior teeth in dental bitewing X-rays using deep learning

Standardized tooth numbering is crucial in dentistry for accurate recordkeeping, targeted procedures, and effective communication in both clinical and forensic contexts. However, conventional manual methods are prone to errors, time-consuming, and susceptible to inconsistencies. This study presents...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers in biology and medicine 2024-12, Vol.183, p.109262, Article 109262
Hauptverfasser: Alsolamy, Mashail, Nadeem, Farrukh, Azhari, Amr Ahmed, Alsolami, Wafa, Ahmed, Walaa Magdy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 109262
container_title Computers in biology and medicine
container_volume 183
creator Alsolamy, Mashail
Nadeem, Farrukh
Azhari, Amr Ahmed
Alsolami, Wafa
Ahmed, Walaa Magdy
description Standardized tooth numbering is crucial in dentistry for accurate recordkeeping, targeted procedures, and effective communication in both clinical and forensic contexts. However, conventional manual methods are prone to errors, time-consuming, and susceptible to inconsistencies. This study presents an artificial intelligence (AI)-powered system that uses a deep learning-based object detection approach to automate tooth numbering in bitewing radiographs (BRs). The system follows the widely accepted FDI two-digit notation system and employs a state-of-the-art YOLO architecture. This one-stage model provides fast inference by simultaneously performing object detection and classification. A comprehensive dataset of 3000 adult digital BRs was used for training and evaluation, covering various scenarios to improve the robustness of the tooth numbering approach. Performance was assessed based on precision, recall, and mean average precision (mAP). The proposed method showcases the potential of AI-powered systems utilizing sophisticated YOLO architectures to automatically detect and label teeth in dental X-rays. It achieved impressive results, demonstrating a precision of 0.99 and 0.963, recall of 0.995 and 0.965, and mAP of 0.99 and 0.963 for tooth detecting and tooth numbering, respectively. With an average inference time of 303 ms per BR when using a central processing unit (CPU) and 9.1 ms when using a graphics processing unit (GPU), the system seamlessly integrates into clinical workflows without sacrificing efficiency. This results in significant time savings for dental professionals while maintaining productivity in fast-paced clinical environments. •YOLOv8 performed excellently in tooth numbering using bitewing radiographs.•Developing a model for each side of the mouth gave better results.•Determining the type of tooth may reach 100 Accuracy using YOLOv8.•YOLOv8 may give excellent results with other types of dental x-ray.•AI-aided tools may help novice dentists perform dental exams and reduce chart errors.
doi_str_mv 10.1016/j.compbiomed.2024.109262
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3122638705</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010482524013477</els_id><sourcerecordid>3122638705</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1927-7cca4233a2f75212425f551eb6f81b6fba97979bf883caffd5acabce0a3ee64c3</originalsourceid><addsrcrecordid>eNqFkU1r3DAQhkVoaLbb_oUi6KUXb_RhW_YxDU1aCPTSQG9iLI9SLbbkSnJD_n1lNqHQSxGMGM0zM-J9CaGcHTjj7eXxYMK8DC7MOB4EE3V57kUrzsiOd6qvWCPrV2THGGdV3YnmgrxJ6cgYq5lkr8mF7GvVKqF2BK7WHGbIONIRM5rsgqfgRzrBgJPzDzRYuoSUMboQaUbMP6nzBfYZJjq4jI8b9aOK8JTomrZkRFzohBB9yd6ScwtTwnfP957c33z-fv2luvt2-_X66q4yvBeqUsZALaQEYVUjuKhFY5uG49DajpcwQK_KGWzXSQPWjg0YGAwykIhtbeSefDzNXWL4tWLKenbJ4DSBx7AmLbkQrexU0WZPPvyDHsMaffndRhW92r6ThepOlIkhpYhWL9HNEJ80Z3qzQR_1Xxv0ZoM-2VBa3z8vWIet9tL4onsBPp0ALIr8dhh1Mg69wdHFYoIeg_v_lj_n2J7U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3128256983</pqid></control><display><type>article</type><title>Automated detection and labeling of posterior teeth in dental bitewing X-rays using deep learning</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Alsolamy, Mashail ; Nadeem, Farrukh ; Azhari, Amr Ahmed ; Alsolami, Wafa ; Ahmed, Walaa Magdy</creator><creatorcontrib>Alsolamy, Mashail ; Nadeem, Farrukh ; Azhari, Amr Ahmed ; Alsolami, Wafa ; Ahmed, Walaa Magdy</creatorcontrib><description>Standardized tooth numbering is crucial in dentistry for accurate recordkeeping, targeted procedures, and effective communication in both clinical and forensic contexts. However, conventional manual methods are prone to errors, time-consuming, and susceptible to inconsistencies. This study presents an artificial intelligence (AI)-powered system that uses a deep learning-based object detection approach to automate tooth numbering in bitewing radiographs (BRs). The system follows the widely accepted FDI two-digit notation system and employs a state-of-the-art YOLO architecture. This one-stage model provides fast inference by simultaneously performing object detection and classification. A comprehensive dataset of 3000 adult digital BRs was used for training and evaluation, covering various scenarios to improve the robustness of the tooth numbering approach. Performance was assessed based on precision, recall, and mean average precision (mAP). The proposed method showcases the potential of AI-powered systems utilizing sophisticated YOLO architectures to automatically detect and label teeth in dental X-rays. It achieved impressive results, demonstrating a precision of 0.99 and 0.963, recall of 0.995 and 0.965, and mAP of 0.99 and 0.963 for tooth detecting and tooth numbering, respectively. With an average inference time of 303 ms per BR when using a central processing unit (CPU) and 9.1 ms when using a graphics processing unit (GPU), the system seamlessly integrates into clinical workflows without sacrificing efficiency. This results in significant time savings for dental professionals while maintaining productivity in fast-paced clinical environments. •YOLOv8 performed excellently in tooth numbering using bitewing radiographs.•Developing a model for each side of the mouth gave better results.•Determining the type of tooth may reach 100 Accuracy using YOLOv8.•YOLOv8 may give excellent results with other types of dental x-ray.•AI-aided tools may help novice dentists perform dental exams and reduce chart errors.</description><identifier>ISSN: 0010-4825</identifier><identifier>ISSN: 1879-0534</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2024.109262</identifier><identifier>PMID: 39476727</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Adult ; Artificial intelligence ; Automation ; Bitewing radiographs ; Central processing units ; CPUs ; Deep Learning ; Dentistry ; Graphics processing units ; Humans ; Image Processing, Computer-Assisted - methods ; Inference ; Labels ; Machine learning ; Object detection ; Object recognition ; Recall ; Records management ; Teeth ; Tooth - diagnostic imaging ; Tooth numbering ; X-rays ; YOLO</subject><ispartof>Computers in biology and medicine, 2024-12, Vol.183, p.109262, Article 109262</ispartof><rights>2024 Elsevier Ltd</rights><rights>Copyright © 2024 Elsevier Ltd. All rights reserved.</rights><rights>2024. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1927-7cca4233a2f75212425f551eb6f81b6fba97979bf883caffd5acabce0a3ee64c3</cites><orcidid>0000-0003-2696-9736 ; 0000-0003-1810-8733 ; 0009-0006-3526-928X ; 0000-0002-5943-4204 ; 0000-0002-8749-4714</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010482524013477$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39476727$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Alsolamy, Mashail</creatorcontrib><creatorcontrib>Nadeem, Farrukh</creatorcontrib><creatorcontrib>Azhari, Amr Ahmed</creatorcontrib><creatorcontrib>Alsolami, Wafa</creatorcontrib><creatorcontrib>Ahmed, Walaa Magdy</creatorcontrib><title>Automated detection and labeling of posterior teeth in dental bitewing X-rays using deep learning</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>Standardized tooth numbering is crucial in dentistry for accurate recordkeeping, targeted procedures, and effective communication in both clinical and forensic contexts. However, conventional manual methods are prone to errors, time-consuming, and susceptible to inconsistencies. This study presents an artificial intelligence (AI)-powered system that uses a deep learning-based object detection approach to automate tooth numbering in bitewing radiographs (BRs). The system follows the widely accepted FDI two-digit notation system and employs a state-of-the-art YOLO architecture. This one-stage model provides fast inference by simultaneously performing object detection and classification. A comprehensive dataset of 3000 adult digital BRs was used for training and evaluation, covering various scenarios to improve the robustness of the tooth numbering approach. Performance was assessed based on precision, recall, and mean average precision (mAP). The proposed method showcases the potential of AI-powered systems utilizing sophisticated YOLO architectures to automatically detect and label teeth in dental X-rays. It achieved impressive results, demonstrating a precision of 0.99 and 0.963, recall of 0.995 and 0.965, and mAP of 0.99 and 0.963 for tooth detecting and tooth numbering, respectively. With an average inference time of 303 ms per BR when using a central processing unit (CPU) and 9.1 ms when using a graphics processing unit (GPU), the system seamlessly integrates into clinical workflows without sacrificing efficiency. This results in significant time savings for dental professionals while maintaining productivity in fast-paced clinical environments. •YOLOv8 performed excellently in tooth numbering using bitewing radiographs.•Developing a model for each side of the mouth gave better results.•Determining the type of tooth may reach 100 Accuracy using YOLOv8.•YOLOv8 may give excellent results with other types of dental x-ray.•AI-aided tools may help novice dentists perform dental exams and reduce chart errors.</description><subject>Adult</subject><subject>Artificial intelligence</subject><subject>Automation</subject><subject>Bitewing radiographs</subject><subject>Central processing units</subject><subject>CPUs</subject><subject>Deep Learning</subject><subject>Dentistry</subject><subject>Graphics processing units</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Inference</subject><subject>Labels</subject><subject>Machine learning</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>Recall</subject><subject>Records management</subject><subject>Teeth</subject><subject>Tooth - diagnostic imaging</subject><subject>Tooth numbering</subject><subject>X-rays</subject><subject>YOLO</subject><issn>0010-4825</issn><issn>1879-0534</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1r3DAQhkVoaLbb_oUi6KUXb_RhW_YxDU1aCPTSQG9iLI9SLbbkSnJD_n1lNqHQSxGMGM0zM-J9CaGcHTjj7eXxYMK8DC7MOB4EE3V57kUrzsiOd6qvWCPrV2THGGdV3YnmgrxJ6cgYq5lkr8mF7GvVKqF2BK7WHGbIONIRM5rsgqfgRzrBgJPzDzRYuoSUMboQaUbMP6nzBfYZJjq4jI8b9aOK8JTomrZkRFzohBB9yd6ScwtTwnfP957c33z-fv2luvt2-_X66q4yvBeqUsZALaQEYVUjuKhFY5uG49DajpcwQK_KGWzXSQPWjg0YGAwykIhtbeSefDzNXWL4tWLKenbJ4DSBx7AmLbkQrexU0WZPPvyDHsMaffndRhW92r6ThepOlIkhpYhWL9HNEJ80Z3qzQR_1Xxv0ZoM-2VBa3z8vWIet9tL4onsBPp0ALIr8dhh1Mg69wdHFYoIeg_v_lj_n2J7U</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Alsolamy, Mashail</creator><creator>Nadeem, Farrukh</creator><creator>Azhari, Amr Ahmed</creator><creator>Alsolami, Wafa</creator><creator>Ahmed, Walaa Magdy</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2696-9736</orcidid><orcidid>https://orcid.org/0000-0003-1810-8733</orcidid><orcidid>https://orcid.org/0009-0006-3526-928X</orcidid><orcidid>https://orcid.org/0000-0002-5943-4204</orcidid><orcidid>https://orcid.org/0000-0002-8749-4714</orcidid></search><sort><creationdate>202412</creationdate><title>Automated detection and labeling of posterior teeth in dental bitewing X-rays using deep learning</title><author>Alsolamy, Mashail ; Nadeem, Farrukh ; Azhari, Amr Ahmed ; Alsolami, Wafa ; Ahmed, Walaa Magdy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1927-7cca4233a2f75212425f551eb6f81b6fba97979bf883caffd5acabce0a3ee64c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adult</topic><topic>Artificial intelligence</topic><topic>Automation</topic><topic>Bitewing radiographs</topic><topic>Central processing units</topic><topic>CPUs</topic><topic>Deep Learning</topic><topic>Dentistry</topic><topic>Graphics processing units</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Inference</topic><topic>Labels</topic><topic>Machine learning</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>Recall</topic><topic>Records management</topic><topic>Teeth</topic><topic>Tooth - diagnostic imaging</topic><topic>Tooth numbering</topic><topic>X-rays</topic><topic>YOLO</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alsolamy, Mashail</creatorcontrib><creatorcontrib>Nadeem, Farrukh</creatorcontrib><creatorcontrib>Azhari, Amr Ahmed</creatorcontrib><creatorcontrib>Alsolami, Wafa</creatorcontrib><creatorcontrib>Ahmed, Walaa Magdy</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alsolamy, Mashail</au><au>Nadeem, Farrukh</au><au>Azhari, Amr Ahmed</au><au>Alsolami, Wafa</au><au>Ahmed, Walaa Magdy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated detection and labeling of posterior teeth in dental bitewing X-rays using deep learning</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2024-12</date><risdate>2024</risdate><volume>183</volume><spage>109262</spage><pages>109262-</pages><artnum>109262</artnum><issn>0010-4825</issn><issn>1879-0534</issn><eissn>1879-0534</eissn><abstract>Standardized tooth numbering is crucial in dentistry for accurate recordkeeping, targeted procedures, and effective communication in both clinical and forensic contexts. However, conventional manual methods are prone to errors, time-consuming, and susceptible to inconsistencies. This study presents an artificial intelligence (AI)-powered system that uses a deep learning-based object detection approach to automate tooth numbering in bitewing radiographs (BRs). The system follows the widely accepted FDI two-digit notation system and employs a state-of-the-art YOLO architecture. This one-stage model provides fast inference by simultaneously performing object detection and classification. A comprehensive dataset of 3000 adult digital BRs was used for training and evaluation, covering various scenarios to improve the robustness of the tooth numbering approach. Performance was assessed based on precision, recall, and mean average precision (mAP). The proposed method showcases the potential of AI-powered systems utilizing sophisticated YOLO architectures to automatically detect and label teeth in dental X-rays. It achieved impressive results, demonstrating a precision of 0.99 and 0.963, recall of 0.995 and 0.965, and mAP of 0.99 and 0.963 for tooth detecting and tooth numbering, respectively. With an average inference time of 303 ms per BR when using a central processing unit (CPU) and 9.1 ms when using a graphics processing unit (GPU), the system seamlessly integrates into clinical workflows without sacrificing efficiency. This results in significant time savings for dental professionals while maintaining productivity in fast-paced clinical environments. •YOLOv8 performed excellently in tooth numbering using bitewing radiographs.•Developing a model for each side of the mouth gave better results.•Determining the type of tooth may reach 100 Accuracy using YOLOv8.•YOLOv8 may give excellent results with other types of dental x-ray.•AI-aided tools may help novice dentists perform dental exams and reduce chart errors.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>39476727</pmid><doi>10.1016/j.compbiomed.2024.109262</doi><orcidid>https://orcid.org/0000-0003-2696-9736</orcidid><orcidid>https://orcid.org/0000-0003-1810-8733</orcidid><orcidid>https://orcid.org/0009-0006-3526-928X</orcidid><orcidid>https://orcid.org/0000-0002-5943-4204</orcidid><orcidid>https://orcid.org/0000-0002-8749-4714</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0010-4825
ispartof Computers in biology and medicine, 2024-12, Vol.183, p.109262, Article 109262
issn 0010-4825
1879-0534
1879-0534
language eng
recordid cdi_proquest_miscellaneous_3122638705
source MEDLINE; Elsevier ScienceDirect Journals
subjects Adult
Artificial intelligence
Automation
Bitewing radiographs
Central processing units
CPUs
Deep Learning
Dentistry
Graphics processing units
Humans
Image Processing, Computer-Assisted - methods
Inference
Labels
Machine learning
Object detection
Object recognition
Recall
Records management
Teeth
Tooth - diagnostic imaging
Tooth numbering
X-rays
YOLO
title Automated detection and labeling of posterior teeth in dental bitewing X-rays using deep learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T06%3A57%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20detection%20and%20labeling%20of%20posterior%20teeth%20in%20dental%20bitewing%20X-rays%20using%20deep%20learning&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Alsolamy,%20Mashail&rft.date=2024-12&rft.volume=183&rft.spage=109262&rft.pages=109262-&rft.artnum=109262&rft.issn=0010-4825&rft.eissn=1879-0534&rft_id=info:doi/10.1016/j.compbiomed.2024.109262&rft_dat=%3Cproquest_cross%3E3122638705%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3128256983&rft_id=info:pmid/39476727&rft_els_id=S0010482524013477&rfr_iscdi=true