Habitat dimensionality and feeding strategies but not temperature as determinants of body size‐trophic structure relationship in a marine food web
Disentangling the determinants of trophic structure is central to ecology. The capacity to capture subjugate and consume a prey (i.e. gape limitation) is a relevant limitation to acquire energy for most organisms, especially those in smaller size ranges. This generates a size hierarchy of trophic po...
Gespeichert in:
Veröffentlicht in: | The Journal of animal ecology 2024-12, Vol.93 (12), p.1910-1923 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1923 |
---|---|
container_issue | 12 |
container_start_page | 1910 |
container_title | The Journal of animal ecology |
container_volume | 93 |
creator | Leoni, Valentina Franco‐Trecu, Valentina Scarabino, Fabrizio Sampognaro, Lia Rodríguez‐Graña, Laura Segura, Angel Manuel |
description | Disentangling the determinants of trophic structure is central to ecology. The capacity to capture subjugate and consume a prey (i.e. gape limitation) is a relevant limitation to acquire energy for most organisms, especially those in smaller size ranges. This generates a size hierarchy of trophic positions in which large organisms consume small ones. Body size is tightly correlated to gape limitation and explains a large fraction of variance in the body size‐trophic position relationship. However, a considerable fraction of variance still remains to be explained. Consumer search space dimensionality (2D or 3D) and feeding strategies, temperature and the size structure of primary producers can alter the trophic structure, but tests based on information from natural food webs are scarce.
We generated specific predictions about the body size trophic position relationship and evaluated them using information from a subtropical South Atlantic coastal marine ecosystem: benthic realm (2D, rocky shore and sandy beach) and the pelagic realm (3D). We characterized this marine coastal food web based on stable isotopes of carbon and nitrogen from 256 samples from primary producers (macroalgae and phytoplankton) to large predators (sand shark) in summer and winter. Consumer body size encompassed six orders of magnitude in weight from 10−2 to 6 × 104 g.
Isotopic signal corresponded to an integration of carbon sources from basal consumers to top predators. The body size‐trophic position relationship showed a linear positive association with different slopes for the benthic and pelagic environments. This implies a smaller predator prey size ratio for pelagic (3D) with respect to benthic consumers (2D) as theoretically expected. No seasonal differences were found in slopes and most of the overall variance in benthic environments was largely explained by feeding strategies of the different taxonomic groups.
We provide an integrated evaluation on the role of body size, consumer search space and feeding strategy to understand the determinants of trophic position.
Results demonstrate that integrating gape limitation hypothesis, the dimensionality of consumer search space and feeding strategies into a formal robust framework to understand trophic structure is feasible even in complex natural ecosystems.
Resumen
Identificar los determinantes de la estructura trófica es central en ecología. El presente trabajo brinda evidencia empírica sobre el rol del tamaño corporal, la dimensi |
doi_str_mv | 10.1111/1365-2656.14199 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3122636272</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3138997590</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2569-801b88078b53e29f304b1508f84453e6b7ab565a178be364c38676f1cd87bd733</originalsourceid><addsrcrecordid>eNqFkb1O3jAUhq2qVflKO3erLHXpEvBPYjsjQhRaIbq0s2UnJ2CU2KntCH1MvYQOXCFXgsNHGVjqxdKr57zW8YPQR0oOaDmHlIumYqIRB7SmbfsKbZ6T12hDCKOVki3ZQ-9SuiaESEb4W7TH21pyJuUG3Z0Z67LJuHcT-OSCN6PLW2x8jweA3vlLnHI0GS4dJGyXjH3IOMM0Q0mXCNgk3EOGODlvfE44DNiGfouTu4X7P39zDPOV69aWpXsciDCaXF5KV27GzmODJxOdBzyE0OMbsO_Rm8GMCT483fvo19eTn8dn1fmP02_HR-dVxxrRVopQqxSRyjYcWDtwUlvaEDWoui6JsNLYRjSGFgK4qDuuhBQD7XolbS8530dfdr1zDL8XSFlPLnUwjsZDWJLmlDHBBZOsoJ9foNdhieWzVoqrtpVNSwp1uKO6GFKKMOg5urLcVlOiV2F61aNXPfpRWJn49NS72An6Z_6foQKIHXDjRtj-r09_P7o42TU_ALG-osA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3138997590</pqid></control><display><type>article</type><title>Habitat dimensionality and feeding strategies but not temperature as determinants of body size‐trophic structure relationship in a marine food web</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Leoni, Valentina ; Franco‐Trecu, Valentina ; Scarabino, Fabrizio ; Sampognaro, Lia ; Rodríguez‐Graña, Laura ; Segura, Angel Manuel</creator><creatorcontrib>Leoni, Valentina ; Franco‐Trecu, Valentina ; Scarabino, Fabrizio ; Sampognaro, Lia ; Rodríguez‐Graña, Laura ; Segura, Angel Manuel</creatorcontrib><description>Disentangling the determinants of trophic structure is central to ecology. The capacity to capture subjugate and consume a prey (i.e. gape limitation) is a relevant limitation to acquire energy for most organisms, especially those in smaller size ranges. This generates a size hierarchy of trophic positions in which large organisms consume small ones. Body size is tightly correlated to gape limitation and explains a large fraction of variance in the body size‐trophic position relationship. However, a considerable fraction of variance still remains to be explained. Consumer search space dimensionality (2D or 3D) and feeding strategies, temperature and the size structure of primary producers can alter the trophic structure, but tests based on information from natural food webs are scarce.
We generated specific predictions about the body size trophic position relationship and evaluated them using information from a subtropical South Atlantic coastal marine ecosystem: benthic realm (2D, rocky shore and sandy beach) and the pelagic realm (3D). We characterized this marine coastal food web based on stable isotopes of carbon and nitrogen from 256 samples from primary producers (macroalgae and phytoplankton) to large predators (sand shark) in summer and winter. Consumer body size encompassed six orders of magnitude in weight from 10−2 to 6 × 104 g.
Isotopic signal corresponded to an integration of carbon sources from basal consumers to top predators. The body size‐trophic position relationship showed a linear positive association with different slopes for the benthic and pelagic environments. This implies a smaller predator prey size ratio for pelagic (3D) with respect to benthic consumers (2D) as theoretically expected. No seasonal differences were found in slopes and most of the overall variance in benthic environments was largely explained by feeding strategies of the different taxonomic groups.
We provide an integrated evaluation on the role of body size, consumer search space and feeding strategy to understand the determinants of trophic position.
Results demonstrate that integrating gape limitation hypothesis, the dimensionality of consumer search space and feeding strategies into a formal robust framework to understand trophic structure is feasible even in complex natural ecosystems.
Resumen
Identificar los determinantes de la estructura trófica es central en ecología. El presente trabajo brinda evidencia empírica sobre el rol del tamaño corporal, la dimensión del espacio de búsqueda de los depredadores y la estrategia de alimentación como determinantes de la posición trófica y su relación con el tamaño. La capacidad de capturar y consumir presas limitado por la apertura de boca es una restricción para la obtención de energía, especialmente en aquellos de pequeño tamaño. Este mecanismo genera una jerarquía de tamaños en la posición trófica de los organismos, donde los grandes consumen a los más pequeños, explicando así gran parte de la variación en la relación tamaño corporal‐posición trófica. Sin embargo, la dimensión espacial en la búsqueda de presas (2D, 3D), la temperatura, las estrategias alimentarias y la productividad primaria del sistema pueden modificar la relación esperada. Esto ha sido escasamente explorado in situ en tramas tróficas naturales.
El presente trabajo estableció predicciones específicas en la relación tamaño corporal posición trófica y lo evaluó en diferentes módulos de un ecosistema subtropical marino‐costero de Sudamérica: el ambiente bentónico (2D, costa rocosa y playa arenosa) y pelágico (3D). La estructura trófica se caracterizó mediante isótopos estables de carbono y nitrógeno en 256 organismos, desde productores primarios (macroalgas y fitoplancton) hasta grandes depredadores (tiburón sarda) en verano e invierno. El rango de tamaños corporales abarcó 6 órdenes de magnitud en peso, desde 10−2 a 6 × 104 g.
La señal isotópica indicó una integración de fuentes de carbono desde los consumidores primarios hasta los depredadores superiores. Se observó una relación lineal positiva entre el tamaño corporal y la posición trófica, con una pendiente menor para el ambiente pelágico (3D) con respecto al bentónico (2D), coincidente con las predicciones teóricas. No se observaron diferencias estacionales. La relación tamaño corporal y la posición trófica del ambiente bentónico presentó una gran variabilidad, con restricciones diferenciales entre grupos taxonómicos según sus hábitos alimentarios.
Esta evaluación basada en el tamaño corporal, el espacio de búsqueda y la estrategia de alimentación permiten comprender los determinantes de la posición trófica.
Los resultados demuestran que la integración de la hipótesis de limitación al consumo, el espacio de búsqueda de presas y la estrategia de alimentación es posible, incluso en ecosistemas naturales complejos.
It is well known that big fish eat small fish, but how does it change that relationship in 3D environments (the sea) versus 2D (bottom of the sea) environments is not clear. The role of dimensionality of predator search space and feeding strategies (crabs vs. snails) are critical.</description><identifier>ISSN: 0021-8790</identifier><identifier>ISSN: 1365-2656</identifier><identifier>EISSN: 1365-2656</identifier><identifier>DOI: 10.1111/1365-2656.14199</identifier><identifier>PMID: 39473277</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Algae ; Animals ; Atlantic Ocean ; benthic‐pelagic compartments ; Body Size ; Body temperature ; Carbon ; Carbon Isotopes - analysis ; Carbon sources ; Coastal ecosystems ; Coastal structures ; Consumers ; Ecosystem ; Feeding ; Feeding Behavior ; Food Chain ; Food chains ; Food webs ; gape limitation ; Genera ; Isotopes ; Marine ecology ; Marine ecosystems ; Natural & organic foods ; Nitrogen Isotopes - analysis ; Phytoplankton ; Phytoplankton - physiology ; Predators ; predator–prey size scaling ; Prey ; Searching ; Seasonal variations ; Seasons ; Seaweed - physiology ; Sharks - physiology ; Southwestern Atlantic ; Stable isotopes ; Temperature ; transitional coastal zone ; Two dimensional bodies</subject><ispartof>The Journal of animal ecology, 2024-12, Vol.93 (12), p.1910-1923</ispartof><rights>2024 The Author(s). Journal of Animal Ecology © 2024 British Ecological Society.</rights><rights>Journal of Animal Ecology © 2024 British Ecological Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2569-801b88078b53e29f304b1508f84453e6b7ab565a178be364c38676f1cd87bd733</cites><orcidid>0000-0002-1989-8899 ; 0000-0003-1791-010X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1365-2656.14199$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1365-2656.14199$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39473277$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Leoni, Valentina</creatorcontrib><creatorcontrib>Franco‐Trecu, Valentina</creatorcontrib><creatorcontrib>Scarabino, Fabrizio</creatorcontrib><creatorcontrib>Sampognaro, Lia</creatorcontrib><creatorcontrib>Rodríguez‐Graña, Laura</creatorcontrib><creatorcontrib>Segura, Angel Manuel</creatorcontrib><title>Habitat dimensionality and feeding strategies but not temperature as determinants of body size‐trophic structure relationship in a marine food web</title><title>The Journal of animal ecology</title><addtitle>J Anim Ecol</addtitle><description>Disentangling the determinants of trophic structure is central to ecology. The capacity to capture subjugate and consume a prey (i.e. gape limitation) is a relevant limitation to acquire energy for most organisms, especially those in smaller size ranges. This generates a size hierarchy of trophic positions in which large organisms consume small ones. Body size is tightly correlated to gape limitation and explains a large fraction of variance in the body size‐trophic position relationship. However, a considerable fraction of variance still remains to be explained. Consumer search space dimensionality (2D or 3D) and feeding strategies, temperature and the size structure of primary producers can alter the trophic structure, but tests based on information from natural food webs are scarce.
We generated specific predictions about the body size trophic position relationship and evaluated them using information from a subtropical South Atlantic coastal marine ecosystem: benthic realm (2D, rocky shore and sandy beach) and the pelagic realm (3D). We characterized this marine coastal food web based on stable isotopes of carbon and nitrogen from 256 samples from primary producers (macroalgae and phytoplankton) to large predators (sand shark) in summer and winter. Consumer body size encompassed six orders of magnitude in weight from 10−2 to 6 × 104 g.
Isotopic signal corresponded to an integration of carbon sources from basal consumers to top predators. The body size‐trophic position relationship showed a linear positive association with different slopes for the benthic and pelagic environments. This implies a smaller predator prey size ratio for pelagic (3D) with respect to benthic consumers (2D) as theoretically expected. No seasonal differences were found in slopes and most of the overall variance in benthic environments was largely explained by feeding strategies of the different taxonomic groups.
We provide an integrated evaluation on the role of body size, consumer search space and feeding strategy to understand the determinants of trophic position.
Results demonstrate that integrating gape limitation hypothesis, the dimensionality of consumer search space and feeding strategies into a formal robust framework to understand trophic structure is feasible even in complex natural ecosystems.
Resumen
Identificar los determinantes de la estructura trófica es central en ecología. El presente trabajo brinda evidencia empírica sobre el rol del tamaño corporal, la dimensión del espacio de búsqueda de los depredadores y la estrategia de alimentación como determinantes de la posición trófica y su relación con el tamaño. La capacidad de capturar y consumir presas limitado por la apertura de boca es una restricción para la obtención de energía, especialmente en aquellos de pequeño tamaño. Este mecanismo genera una jerarquía de tamaños en la posición trófica de los organismos, donde los grandes consumen a los más pequeños, explicando así gran parte de la variación en la relación tamaño corporal‐posición trófica. Sin embargo, la dimensión espacial en la búsqueda de presas (2D, 3D), la temperatura, las estrategias alimentarias y la productividad primaria del sistema pueden modificar la relación esperada. Esto ha sido escasamente explorado in situ en tramas tróficas naturales.
El presente trabajo estableció predicciones específicas en la relación tamaño corporal posición trófica y lo evaluó en diferentes módulos de un ecosistema subtropical marino‐costero de Sudamérica: el ambiente bentónico (2D, costa rocosa y playa arenosa) y pelágico (3D). La estructura trófica se caracterizó mediante isótopos estables de carbono y nitrógeno en 256 organismos, desde productores primarios (macroalgas y fitoplancton) hasta grandes depredadores (tiburón sarda) en verano e invierno. El rango de tamaños corporales abarcó 6 órdenes de magnitud en peso, desde 10−2 a 6 × 104 g.
La señal isotópica indicó una integración de fuentes de carbono desde los consumidores primarios hasta los depredadores superiores. Se observó una relación lineal positiva entre el tamaño corporal y la posición trófica, con una pendiente menor para el ambiente pelágico (3D) con respecto al bentónico (2D), coincidente con las predicciones teóricas. No se observaron diferencias estacionales. La relación tamaño corporal y la posición trófica del ambiente bentónico presentó una gran variabilidad, con restricciones diferenciales entre grupos taxonómicos según sus hábitos alimentarios.
Esta evaluación basada en el tamaño corporal, el espacio de búsqueda y la estrategia de alimentación permiten comprender los determinantes de la posición trófica.
Los resultados demuestran que la integración de la hipótesis de limitación al consumo, el espacio de búsqueda de presas y la estrategia de alimentación es posible, incluso en ecosistemas naturales complejos.
It is well known that big fish eat small fish, but how does it change that relationship in 3D environments (the sea) versus 2D (bottom of the sea) environments is not clear. The role of dimensionality of predator search space and feeding strategies (crabs vs. snails) are critical.</description><subject>Algae</subject><subject>Animals</subject><subject>Atlantic Ocean</subject><subject>benthic‐pelagic compartments</subject><subject>Body Size</subject><subject>Body temperature</subject><subject>Carbon</subject><subject>Carbon Isotopes - analysis</subject><subject>Carbon sources</subject><subject>Coastal ecosystems</subject><subject>Coastal structures</subject><subject>Consumers</subject><subject>Ecosystem</subject><subject>Feeding</subject><subject>Feeding Behavior</subject><subject>Food Chain</subject><subject>Food chains</subject><subject>Food webs</subject><subject>gape limitation</subject><subject>Genera</subject><subject>Isotopes</subject><subject>Marine ecology</subject><subject>Marine ecosystems</subject><subject>Natural & organic foods</subject><subject>Nitrogen Isotopes - analysis</subject><subject>Phytoplankton</subject><subject>Phytoplankton - physiology</subject><subject>Predators</subject><subject>predator–prey size scaling</subject><subject>Prey</subject><subject>Searching</subject><subject>Seasonal variations</subject><subject>Seasons</subject><subject>Seaweed - physiology</subject><subject>Sharks - physiology</subject><subject>Southwestern Atlantic</subject><subject>Stable isotopes</subject><subject>Temperature</subject><subject>transitional coastal zone</subject><subject>Two dimensional bodies</subject><issn>0021-8790</issn><issn>1365-2656</issn><issn>1365-2656</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkb1O3jAUhq2qVflKO3erLHXpEvBPYjsjQhRaIbq0s2UnJ2CU2KntCH1MvYQOXCFXgsNHGVjqxdKr57zW8YPQR0oOaDmHlIumYqIRB7SmbfsKbZ6T12hDCKOVki3ZQ-9SuiaESEb4W7TH21pyJuUG3Z0Z67LJuHcT-OSCN6PLW2x8jweA3vlLnHI0GS4dJGyXjH3IOMM0Q0mXCNgk3EOGODlvfE44DNiGfouTu4X7P39zDPOV69aWpXsciDCaXF5KV27GzmODJxOdBzyE0OMbsO_Rm8GMCT483fvo19eTn8dn1fmP02_HR-dVxxrRVopQqxSRyjYcWDtwUlvaEDWoui6JsNLYRjSGFgK4qDuuhBQD7XolbS8530dfdr1zDL8XSFlPLnUwjsZDWJLmlDHBBZOsoJ9foNdhieWzVoqrtpVNSwp1uKO6GFKKMOg5urLcVlOiV2F61aNXPfpRWJn49NS72An6Z_6foQKIHXDjRtj-r09_P7o42TU_ALG-osA</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Leoni, Valentina</creator><creator>Franco‐Trecu, Valentina</creator><creator>Scarabino, Fabrizio</creator><creator>Sampognaro, Lia</creator><creator>Rodríguez‐Graña, Laura</creator><creator>Segura, Angel Manuel</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1989-8899</orcidid><orcidid>https://orcid.org/0000-0003-1791-010X</orcidid></search><sort><creationdate>202412</creationdate><title>Habitat dimensionality and feeding strategies but not temperature as determinants of body size‐trophic structure relationship in a marine food web</title><author>Leoni, Valentina ; Franco‐Trecu, Valentina ; Scarabino, Fabrizio ; Sampognaro, Lia ; Rodríguez‐Graña, Laura ; Segura, Angel Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2569-801b88078b53e29f304b1508f84453e6b7ab565a178be364c38676f1cd87bd733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algae</topic><topic>Animals</topic><topic>Atlantic Ocean</topic><topic>benthic‐pelagic compartments</topic><topic>Body Size</topic><topic>Body temperature</topic><topic>Carbon</topic><topic>Carbon Isotopes - analysis</topic><topic>Carbon sources</topic><topic>Coastal ecosystems</topic><topic>Coastal structures</topic><topic>Consumers</topic><topic>Ecosystem</topic><topic>Feeding</topic><topic>Feeding Behavior</topic><topic>Food Chain</topic><topic>Food chains</topic><topic>Food webs</topic><topic>gape limitation</topic><topic>Genera</topic><topic>Isotopes</topic><topic>Marine ecology</topic><topic>Marine ecosystems</topic><topic>Natural & organic foods</topic><topic>Nitrogen Isotopes - analysis</topic><topic>Phytoplankton</topic><topic>Phytoplankton - physiology</topic><topic>Predators</topic><topic>predator–prey size scaling</topic><topic>Prey</topic><topic>Searching</topic><topic>Seasonal variations</topic><topic>Seasons</topic><topic>Seaweed - physiology</topic><topic>Sharks - physiology</topic><topic>Southwestern Atlantic</topic><topic>Stable isotopes</topic><topic>Temperature</topic><topic>transitional coastal zone</topic><topic>Two dimensional bodies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leoni, Valentina</creatorcontrib><creatorcontrib>Franco‐Trecu, Valentina</creatorcontrib><creatorcontrib>Scarabino, Fabrizio</creatorcontrib><creatorcontrib>Sampognaro, Lia</creatorcontrib><creatorcontrib>Rodríguez‐Graña, Laura</creatorcontrib><creatorcontrib>Segura, Angel Manuel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of animal ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leoni, Valentina</au><au>Franco‐Trecu, Valentina</au><au>Scarabino, Fabrizio</au><au>Sampognaro, Lia</au><au>Rodríguez‐Graña, Laura</au><au>Segura, Angel Manuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Habitat dimensionality and feeding strategies but not temperature as determinants of body size‐trophic structure relationship in a marine food web</atitle><jtitle>The Journal of animal ecology</jtitle><addtitle>J Anim Ecol</addtitle><date>2024-12</date><risdate>2024</risdate><volume>93</volume><issue>12</issue><spage>1910</spage><epage>1923</epage><pages>1910-1923</pages><issn>0021-8790</issn><issn>1365-2656</issn><eissn>1365-2656</eissn><abstract>Disentangling the determinants of trophic structure is central to ecology. The capacity to capture subjugate and consume a prey (i.e. gape limitation) is a relevant limitation to acquire energy for most organisms, especially those in smaller size ranges. This generates a size hierarchy of trophic positions in which large organisms consume small ones. Body size is tightly correlated to gape limitation and explains a large fraction of variance in the body size‐trophic position relationship. However, a considerable fraction of variance still remains to be explained. Consumer search space dimensionality (2D or 3D) and feeding strategies, temperature and the size structure of primary producers can alter the trophic structure, but tests based on information from natural food webs are scarce.
We generated specific predictions about the body size trophic position relationship and evaluated them using information from a subtropical South Atlantic coastal marine ecosystem: benthic realm (2D, rocky shore and sandy beach) and the pelagic realm (3D). We characterized this marine coastal food web based on stable isotopes of carbon and nitrogen from 256 samples from primary producers (macroalgae and phytoplankton) to large predators (sand shark) in summer and winter. Consumer body size encompassed six orders of magnitude in weight from 10−2 to 6 × 104 g.
Isotopic signal corresponded to an integration of carbon sources from basal consumers to top predators. The body size‐trophic position relationship showed a linear positive association with different slopes for the benthic and pelagic environments. This implies a smaller predator prey size ratio for pelagic (3D) with respect to benthic consumers (2D) as theoretically expected. No seasonal differences were found in slopes and most of the overall variance in benthic environments was largely explained by feeding strategies of the different taxonomic groups.
We provide an integrated evaluation on the role of body size, consumer search space and feeding strategy to understand the determinants of trophic position.
Results demonstrate that integrating gape limitation hypothesis, the dimensionality of consumer search space and feeding strategies into a formal robust framework to understand trophic structure is feasible even in complex natural ecosystems.
Resumen
Identificar los determinantes de la estructura trófica es central en ecología. El presente trabajo brinda evidencia empírica sobre el rol del tamaño corporal, la dimensión del espacio de búsqueda de los depredadores y la estrategia de alimentación como determinantes de la posición trófica y su relación con el tamaño. La capacidad de capturar y consumir presas limitado por la apertura de boca es una restricción para la obtención de energía, especialmente en aquellos de pequeño tamaño. Este mecanismo genera una jerarquía de tamaños en la posición trófica de los organismos, donde los grandes consumen a los más pequeños, explicando así gran parte de la variación en la relación tamaño corporal‐posición trófica. Sin embargo, la dimensión espacial en la búsqueda de presas (2D, 3D), la temperatura, las estrategias alimentarias y la productividad primaria del sistema pueden modificar la relación esperada. Esto ha sido escasamente explorado in situ en tramas tróficas naturales.
El presente trabajo estableció predicciones específicas en la relación tamaño corporal posición trófica y lo evaluó en diferentes módulos de un ecosistema subtropical marino‐costero de Sudamérica: el ambiente bentónico (2D, costa rocosa y playa arenosa) y pelágico (3D). La estructura trófica se caracterizó mediante isótopos estables de carbono y nitrógeno en 256 organismos, desde productores primarios (macroalgas y fitoplancton) hasta grandes depredadores (tiburón sarda) en verano e invierno. El rango de tamaños corporales abarcó 6 órdenes de magnitud en peso, desde 10−2 a 6 × 104 g.
La señal isotópica indicó una integración de fuentes de carbono desde los consumidores primarios hasta los depredadores superiores. Se observó una relación lineal positiva entre el tamaño corporal y la posición trófica, con una pendiente menor para el ambiente pelágico (3D) con respecto al bentónico (2D), coincidente con las predicciones teóricas. No se observaron diferencias estacionales. La relación tamaño corporal y la posición trófica del ambiente bentónico presentó una gran variabilidad, con restricciones diferenciales entre grupos taxonómicos según sus hábitos alimentarios.
Esta evaluación basada en el tamaño corporal, el espacio de búsqueda y la estrategia de alimentación permiten comprender los determinantes de la posición trófica.
Los resultados demuestran que la integración de la hipótesis de limitación al consumo, el espacio de búsqueda de presas y la estrategia de alimentación es posible, incluso en ecosistemas naturales complejos.
It is well known that big fish eat small fish, but how does it change that relationship in 3D environments (the sea) versus 2D (bottom of the sea) environments is not clear. The role of dimensionality of predator search space and feeding strategies (crabs vs. snails) are critical.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>39473277</pmid><doi>10.1111/1365-2656.14199</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1989-8899</orcidid><orcidid>https://orcid.org/0000-0003-1791-010X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8790 |
ispartof | The Journal of animal ecology, 2024-12, Vol.93 (12), p.1910-1923 |
issn | 0021-8790 1365-2656 1365-2656 |
language | eng |
recordid | cdi_proquest_miscellaneous_3122636272 |
source | MEDLINE; Wiley Online Library All Journals |
subjects | Algae Animals Atlantic Ocean benthic‐pelagic compartments Body Size Body temperature Carbon Carbon Isotopes - analysis Carbon sources Coastal ecosystems Coastal structures Consumers Ecosystem Feeding Feeding Behavior Food Chain Food chains Food webs gape limitation Genera Isotopes Marine ecology Marine ecosystems Natural & organic foods Nitrogen Isotopes - analysis Phytoplankton Phytoplankton - physiology Predators predator–prey size scaling Prey Searching Seasonal variations Seasons Seaweed - physiology Sharks - physiology Southwestern Atlantic Stable isotopes Temperature transitional coastal zone Two dimensional bodies |
title | Habitat dimensionality and feeding strategies but not temperature as determinants of body size‐trophic structure relationship in a marine food web |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A30%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Habitat%20dimensionality%20and%20feeding%20strategies%20but%20not%20temperature%20as%20determinants%20of%20body%20size%E2%80%90trophic%20structure%20relationship%20in%20a%20marine%20food%20web&rft.jtitle=The%20Journal%20of%20animal%20ecology&rft.au=Leoni,%20Valentina&rft.date=2024-12&rft.volume=93&rft.issue=12&rft.spage=1910&rft.epage=1923&rft.pages=1910-1923&rft.issn=0021-8790&rft.eissn=1365-2656&rft_id=info:doi/10.1111/1365-2656.14199&rft_dat=%3Cproquest_cross%3E3138997590%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3138997590&rft_id=info:pmid/39473277&rfr_iscdi=true |