Habitat dimensionality and feeding strategies but not temperature as determinants of body size‐trophic structure relationship in a marine food web

Disentangling the determinants of trophic structure is central to ecology. The capacity to capture subjugate and consume a prey (i.e. gape limitation) is a relevant limitation to acquire energy for most organisms, especially those in smaller size ranges. This generates a size hierarchy of trophic po...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of animal ecology 2024-12, Vol.93 (12), p.1910-1923
Hauptverfasser: Leoni, Valentina, Franco‐Trecu, Valentina, Scarabino, Fabrizio, Sampognaro, Lia, Rodríguez‐Graña, Laura, Segura, Angel Manuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1923
container_issue 12
container_start_page 1910
container_title The Journal of animal ecology
container_volume 93
creator Leoni, Valentina
Franco‐Trecu, Valentina
Scarabino, Fabrizio
Sampognaro, Lia
Rodríguez‐Graña, Laura
Segura, Angel Manuel
description Disentangling the determinants of trophic structure is central to ecology. The capacity to capture subjugate and consume a prey (i.e. gape limitation) is a relevant limitation to acquire energy for most organisms, especially those in smaller size ranges. This generates a size hierarchy of trophic positions in which large organisms consume small ones. Body size is tightly correlated to gape limitation and explains a large fraction of variance in the body size‐trophic position relationship. However, a considerable fraction of variance still remains to be explained. Consumer search space dimensionality (2D or 3D) and feeding strategies, temperature and the size structure of primary producers can alter the trophic structure, but tests based on information from natural food webs are scarce. We generated specific predictions about the body size trophic position relationship and evaluated them using information from a subtropical South Atlantic coastal marine ecosystem: benthic realm (2D, rocky shore and sandy beach) and the pelagic realm (3D). We characterized this marine coastal food web based on stable isotopes of carbon and nitrogen from 256 samples from primary producers (macroalgae and phytoplankton) to large predators (sand shark) in summer and winter. Consumer body size encompassed six orders of magnitude in weight from 10−2 to 6 × 104 g. Isotopic signal corresponded to an integration of carbon sources from basal consumers to top predators. The body size‐trophic position relationship showed a linear positive association with different slopes for the benthic and pelagic environments. This implies a smaller predator prey size ratio for pelagic (3D) with respect to benthic consumers (2D) as theoretically expected. No seasonal differences were found in slopes and most of the overall variance in benthic environments was largely explained by feeding strategies of the different taxonomic groups. We provide an integrated evaluation on the role of body size, consumer search space and feeding strategy to understand the determinants of trophic position. Results demonstrate that integrating gape limitation hypothesis, the dimensionality of consumer search space and feeding strategies into a formal robust framework to understand trophic structure is feasible even in complex natural ecosystems. Resumen Identificar los determinantes de la estructura trófica es central en ecología. El presente trabajo brinda evidencia empírica sobre el rol del tamaño corporal, la dimensi
doi_str_mv 10.1111/1365-2656.14199
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3122636272</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3138997590</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2569-801b88078b53e29f304b1508f84453e6b7ab565a178be364c38676f1cd87bd733</originalsourceid><addsrcrecordid>eNqFkb1O3jAUhq2qVflKO3erLHXpEvBPYjsjQhRaIbq0s2UnJ2CU2KntCH1MvYQOXCFXgsNHGVjqxdKr57zW8YPQR0oOaDmHlIumYqIRB7SmbfsKbZ6T12hDCKOVki3ZQ-9SuiaESEb4W7TH21pyJuUG3Z0Z67LJuHcT-OSCN6PLW2x8jweA3vlLnHI0GS4dJGyXjH3IOMM0Q0mXCNgk3EOGODlvfE44DNiGfouTu4X7P39zDPOV69aWpXsciDCaXF5KV27GzmODJxOdBzyE0OMbsO_Rm8GMCT483fvo19eTn8dn1fmP02_HR-dVxxrRVopQqxSRyjYcWDtwUlvaEDWoui6JsNLYRjSGFgK4qDuuhBQD7XolbS8530dfdr1zDL8XSFlPLnUwjsZDWJLmlDHBBZOsoJ9foNdhieWzVoqrtpVNSwp1uKO6GFKKMOg5urLcVlOiV2F61aNXPfpRWJn49NS72An6Z_6foQKIHXDjRtj-r09_P7o42TU_ALG-osA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3138997590</pqid></control><display><type>article</type><title>Habitat dimensionality and feeding strategies but not temperature as determinants of body size‐trophic structure relationship in a marine food web</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Leoni, Valentina ; Franco‐Trecu, Valentina ; Scarabino, Fabrizio ; Sampognaro, Lia ; Rodríguez‐Graña, Laura ; Segura, Angel Manuel</creator><creatorcontrib>Leoni, Valentina ; Franco‐Trecu, Valentina ; Scarabino, Fabrizio ; Sampognaro, Lia ; Rodríguez‐Graña, Laura ; Segura, Angel Manuel</creatorcontrib><description>Disentangling the determinants of trophic structure is central to ecology. The capacity to capture subjugate and consume a prey (i.e. gape limitation) is a relevant limitation to acquire energy for most organisms, especially those in smaller size ranges. This generates a size hierarchy of trophic positions in which large organisms consume small ones. Body size is tightly correlated to gape limitation and explains a large fraction of variance in the body size‐trophic position relationship. However, a considerable fraction of variance still remains to be explained. Consumer search space dimensionality (2D or 3D) and feeding strategies, temperature and the size structure of primary producers can alter the trophic structure, but tests based on information from natural food webs are scarce. We generated specific predictions about the body size trophic position relationship and evaluated them using information from a subtropical South Atlantic coastal marine ecosystem: benthic realm (2D, rocky shore and sandy beach) and the pelagic realm (3D). We characterized this marine coastal food web based on stable isotopes of carbon and nitrogen from 256 samples from primary producers (macroalgae and phytoplankton) to large predators (sand shark) in summer and winter. Consumer body size encompassed six orders of magnitude in weight from 10−2 to 6 × 104 g. Isotopic signal corresponded to an integration of carbon sources from basal consumers to top predators. The body size‐trophic position relationship showed a linear positive association with different slopes for the benthic and pelagic environments. This implies a smaller predator prey size ratio for pelagic (3D) with respect to benthic consumers (2D) as theoretically expected. No seasonal differences were found in slopes and most of the overall variance in benthic environments was largely explained by feeding strategies of the different taxonomic groups. We provide an integrated evaluation on the role of body size, consumer search space and feeding strategy to understand the determinants of trophic position. Results demonstrate that integrating gape limitation hypothesis, the dimensionality of consumer search space and feeding strategies into a formal robust framework to understand trophic structure is feasible even in complex natural ecosystems. Resumen Identificar los determinantes de la estructura trófica es central en ecología. El presente trabajo brinda evidencia empírica sobre el rol del tamaño corporal, la dimensión del espacio de búsqueda de los depredadores y la estrategia de alimentación como determinantes de la posición trófica y su relación con el tamaño. La capacidad de capturar y consumir presas limitado por la apertura de boca es una restricción para la obtención de energía, especialmente en aquellos de pequeño tamaño. Este mecanismo genera una jerarquía de tamaños en la posición trófica de los organismos, donde los grandes consumen a los más pequeños, explicando así gran parte de la variación en la relación tamaño corporal‐posición trófica. Sin embargo, la dimensión espacial en la búsqueda de presas (2D, 3D), la temperatura, las estrategias alimentarias y la productividad primaria del sistema pueden modificar la relación esperada. Esto ha sido escasamente explorado in situ en tramas tróficas naturales. El presente trabajo estableció predicciones específicas en la relación tamaño corporal posición trófica y lo evaluó en diferentes módulos de un ecosistema subtropical marino‐costero de Sudamérica: el ambiente bentónico (2D, costa rocosa y playa arenosa) y pelágico (3D). La estructura trófica se caracterizó mediante isótopos estables de carbono y nitrógeno en 256 organismos, desde productores primarios (macroalgas y fitoplancton) hasta grandes depredadores (tiburón sarda) en verano e invierno. El rango de tamaños corporales abarcó 6 órdenes de magnitud en peso, desde 10−2 a 6 × 104 g. La señal isotópica indicó una integración de fuentes de carbono desde los consumidores primarios hasta los depredadores superiores. Se observó una relación lineal positiva entre el tamaño corporal y la posición trófica, con una pendiente menor para el ambiente pelágico (3D) con respecto al bentónico (2D), coincidente con las predicciones teóricas. No se observaron diferencias estacionales. La relación tamaño corporal y la posición trófica del ambiente bentónico presentó una gran variabilidad, con restricciones diferenciales entre grupos taxonómicos según sus hábitos alimentarios. Esta evaluación basada en el tamaño corporal, el espacio de búsqueda y la estrategia de alimentación permiten comprender los determinantes de la posición trófica. Los resultados demuestran que la integración de la hipótesis de limitación al consumo, el espacio de búsqueda de presas y la estrategia de alimentación es posible, incluso en ecosistemas naturales complejos. It is well known that big fish eat small fish, but how does it change that relationship in 3D environments (the sea) versus 2D (bottom of the sea) environments is not clear. The role of dimensionality of predator search space and feeding strategies (crabs vs. snails) are critical.</description><identifier>ISSN: 0021-8790</identifier><identifier>ISSN: 1365-2656</identifier><identifier>EISSN: 1365-2656</identifier><identifier>DOI: 10.1111/1365-2656.14199</identifier><identifier>PMID: 39473277</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Algae ; Animals ; Atlantic Ocean ; benthic‐pelagic compartments ; Body Size ; Body temperature ; Carbon ; Carbon Isotopes - analysis ; Carbon sources ; Coastal ecosystems ; Coastal structures ; Consumers ; Ecosystem ; Feeding ; Feeding Behavior ; Food Chain ; Food chains ; Food webs ; gape limitation ; Genera ; Isotopes ; Marine ecology ; Marine ecosystems ; Natural &amp; organic foods ; Nitrogen Isotopes - analysis ; Phytoplankton ; Phytoplankton - physiology ; Predators ; predator–prey size scaling ; Prey ; Searching ; Seasonal variations ; Seasons ; Seaweed - physiology ; Sharks - physiology ; Southwestern Atlantic ; Stable isotopes ; Temperature ; transitional coastal zone ; Two dimensional bodies</subject><ispartof>The Journal of animal ecology, 2024-12, Vol.93 (12), p.1910-1923</ispartof><rights>2024 The Author(s). Journal of Animal Ecology © 2024 British Ecological Society.</rights><rights>Journal of Animal Ecology © 2024 British Ecological Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2569-801b88078b53e29f304b1508f84453e6b7ab565a178be364c38676f1cd87bd733</cites><orcidid>0000-0002-1989-8899 ; 0000-0003-1791-010X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1365-2656.14199$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1365-2656.14199$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39473277$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Leoni, Valentina</creatorcontrib><creatorcontrib>Franco‐Trecu, Valentina</creatorcontrib><creatorcontrib>Scarabino, Fabrizio</creatorcontrib><creatorcontrib>Sampognaro, Lia</creatorcontrib><creatorcontrib>Rodríguez‐Graña, Laura</creatorcontrib><creatorcontrib>Segura, Angel Manuel</creatorcontrib><title>Habitat dimensionality and feeding strategies but not temperature as determinants of body size‐trophic structure relationship in a marine food web</title><title>The Journal of animal ecology</title><addtitle>J Anim Ecol</addtitle><description>Disentangling the determinants of trophic structure is central to ecology. The capacity to capture subjugate and consume a prey (i.e. gape limitation) is a relevant limitation to acquire energy for most organisms, especially those in smaller size ranges. This generates a size hierarchy of trophic positions in which large organisms consume small ones. Body size is tightly correlated to gape limitation and explains a large fraction of variance in the body size‐trophic position relationship. However, a considerable fraction of variance still remains to be explained. Consumer search space dimensionality (2D or 3D) and feeding strategies, temperature and the size structure of primary producers can alter the trophic structure, but tests based on information from natural food webs are scarce. We generated specific predictions about the body size trophic position relationship and evaluated them using information from a subtropical South Atlantic coastal marine ecosystem: benthic realm (2D, rocky shore and sandy beach) and the pelagic realm (3D). We characterized this marine coastal food web based on stable isotopes of carbon and nitrogen from 256 samples from primary producers (macroalgae and phytoplankton) to large predators (sand shark) in summer and winter. Consumer body size encompassed six orders of magnitude in weight from 10−2 to 6 × 104 g. Isotopic signal corresponded to an integration of carbon sources from basal consumers to top predators. The body size‐trophic position relationship showed a linear positive association with different slopes for the benthic and pelagic environments. This implies a smaller predator prey size ratio for pelagic (3D) with respect to benthic consumers (2D) as theoretically expected. No seasonal differences were found in slopes and most of the overall variance in benthic environments was largely explained by feeding strategies of the different taxonomic groups. We provide an integrated evaluation on the role of body size, consumer search space and feeding strategy to understand the determinants of trophic position. Results demonstrate that integrating gape limitation hypothesis, the dimensionality of consumer search space and feeding strategies into a formal robust framework to understand trophic structure is feasible even in complex natural ecosystems. Resumen Identificar los determinantes de la estructura trófica es central en ecología. El presente trabajo brinda evidencia empírica sobre el rol del tamaño corporal, la dimensión del espacio de búsqueda de los depredadores y la estrategia de alimentación como determinantes de la posición trófica y su relación con el tamaño. La capacidad de capturar y consumir presas limitado por la apertura de boca es una restricción para la obtención de energía, especialmente en aquellos de pequeño tamaño. Este mecanismo genera una jerarquía de tamaños en la posición trófica de los organismos, donde los grandes consumen a los más pequeños, explicando así gran parte de la variación en la relación tamaño corporal‐posición trófica. Sin embargo, la dimensión espacial en la búsqueda de presas (2D, 3D), la temperatura, las estrategias alimentarias y la productividad primaria del sistema pueden modificar la relación esperada. Esto ha sido escasamente explorado in situ en tramas tróficas naturales. El presente trabajo estableció predicciones específicas en la relación tamaño corporal posición trófica y lo evaluó en diferentes módulos de un ecosistema subtropical marino‐costero de Sudamérica: el ambiente bentónico (2D, costa rocosa y playa arenosa) y pelágico (3D). La estructura trófica se caracterizó mediante isótopos estables de carbono y nitrógeno en 256 organismos, desde productores primarios (macroalgas y fitoplancton) hasta grandes depredadores (tiburón sarda) en verano e invierno. El rango de tamaños corporales abarcó 6 órdenes de magnitud en peso, desde 10−2 a 6 × 104 g. La señal isotópica indicó una integración de fuentes de carbono desde los consumidores primarios hasta los depredadores superiores. Se observó una relación lineal positiva entre el tamaño corporal y la posición trófica, con una pendiente menor para el ambiente pelágico (3D) con respecto al bentónico (2D), coincidente con las predicciones teóricas. No se observaron diferencias estacionales. La relación tamaño corporal y la posición trófica del ambiente bentónico presentó una gran variabilidad, con restricciones diferenciales entre grupos taxonómicos según sus hábitos alimentarios. Esta evaluación basada en el tamaño corporal, el espacio de búsqueda y la estrategia de alimentación permiten comprender los determinantes de la posición trófica. Los resultados demuestran que la integración de la hipótesis de limitación al consumo, el espacio de búsqueda de presas y la estrategia de alimentación es posible, incluso en ecosistemas naturales complejos. It is well known that big fish eat small fish, but how does it change that relationship in 3D environments (the sea) versus 2D (bottom of the sea) environments is not clear. The role of dimensionality of predator search space and feeding strategies (crabs vs. snails) are critical.</description><subject>Algae</subject><subject>Animals</subject><subject>Atlantic Ocean</subject><subject>benthic‐pelagic compartments</subject><subject>Body Size</subject><subject>Body temperature</subject><subject>Carbon</subject><subject>Carbon Isotopes - analysis</subject><subject>Carbon sources</subject><subject>Coastal ecosystems</subject><subject>Coastal structures</subject><subject>Consumers</subject><subject>Ecosystem</subject><subject>Feeding</subject><subject>Feeding Behavior</subject><subject>Food Chain</subject><subject>Food chains</subject><subject>Food webs</subject><subject>gape limitation</subject><subject>Genera</subject><subject>Isotopes</subject><subject>Marine ecology</subject><subject>Marine ecosystems</subject><subject>Natural &amp; organic foods</subject><subject>Nitrogen Isotopes - analysis</subject><subject>Phytoplankton</subject><subject>Phytoplankton - physiology</subject><subject>Predators</subject><subject>predator–prey size scaling</subject><subject>Prey</subject><subject>Searching</subject><subject>Seasonal variations</subject><subject>Seasons</subject><subject>Seaweed - physiology</subject><subject>Sharks - physiology</subject><subject>Southwestern Atlantic</subject><subject>Stable isotopes</subject><subject>Temperature</subject><subject>transitional coastal zone</subject><subject>Two dimensional bodies</subject><issn>0021-8790</issn><issn>1365-2656</issn><issn>1365-2656</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkb1O3jAUhq2qVflKO3erLHXpEvBPYjsjQhRaIbq0s2UnJ2CU2KntCH1MvYQOXCFXgsNHGVjqxdKr57zW8YPQR0oOaDmHlIumYqIRB7SmbfsKbZ6T12hDCKOVki3ZQ-9SuiaESEb4W7TH21pyJuUG3Z0Z67LJuHcT-OSCN6PLW2x8jweA3vlLnHI0GS4dJGyXjH3IOMM0Q0mXCNgk3EOGODlvfE44DNiGfouTu4X7P39zDPOV69aWpXsciDCaXF5KV27GzmODJxOdBzyE0OMbsO_Rm8GMCT483fvo19eTn8dn1fmP02_HR-dVxxrRVopQqxSRyjYcWDtwUlvaEDWoui6JsNLYRjSGFgK4qDuuhBQD7XolbS8530dfdr1zDL8XSFlPLnUwjsZDWJLmlDHBBZOsoJ9foNdhieWzVoqrtpVNSwp1uKO6GFKKMOg5urLcVlOiV2F61aNXPfpRWJn49NS72An6Z_6foQKIHXDjRtj-r09_P7o42TU_ALG-osA</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Leoni, Valentina</creator><creator>Franco‐Trecu, Valentina</creator><creator>Scarabino, Fabrizio</creator><creator>Sampognaro, Lia</creator><creator>Rodríguez‐Graña, Laura</creator><creator>Segura, Angel Manuel</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1989-8899</orcidid><orcidid>https://orcid.org/0000-0003-1791-010X</orcidid></search><sort><creationdate>202412</creationdate><title>Habitat dimensionality and feeding strategies but not temperature as determinants of body size‐trophic structure relationship in a marine food web</title><author>Leoni, Valentina ; Franco‐Trecu, Valentina ; Scarabino, Fabrizio ; Sampognaro, Lia ; Rodríguez‐Graña, Laura ; Segura, Angel Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2569-801b88078b53e29f304b1508f84453e6b7ab565a178be364c38676f1cd87bd733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algae</topic><topic>Animals</topic><topic>Atlantic Ocean</topic><topic>benthic‐pelagic compartments</topic><topic>Body Size</topic><topic>Body temperature</topic><topic>Carbon</topic><topic>Carbon Isotopes - analysis</topic><topic>Carbon sources</topic><topic>Coastal ecosystems</topic><topic>Coastal structures</topic><topic>Consumers</topic><topic>Ecosystem</topic><topic>Feeding</topic><topic>Feeding Behavior</topic><topic>Food Chain</topic><topic>Food chains</topic><topic>Food webs</topic><topic>gape limitation</topic><topic>Genera</topic><topic>Isotopes</topic><topic>Marine ecology</topic><topic>Marine ecosystems</topic><topic>Natural &amp; organic foods</topic><topic>Nitrogen Isotopes - analysis</topic><topic>Phytoplankton</topic><topic>Phytoplankton - physiology</topic><topic>Predators</topic><topic>predator–prey size scaling</topic><topic>Prey</topic><topic>Searching</topic><topic>Seasonal variations</topic><topic>Seasons</topic><topic>Seaweed - physiology</topic><topic>Sharks - physiology</topic><topic>Southwestern Atlantic</topic><topic>Stable isotopes</topic><topic>Temperature</topic><topic>transitional coastal zone</topic><topic>Two dimensional bodies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leoni, Valentina</creatorcontrib><creatorcontrib>Franco‐Trecu, Valentina</creatorcontrib><creatorcontrib>Scarabino, Fabrizio</creatorcontrib><creatorcontrib>Sampognaro, Lia</creatorcontrib><creatorcontrib>Rodríguez‐Graña, Laura</creatorcontrib><creatorcontrib>Segura, Angel Manuel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of animal ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leoni, Valentina</au><au>Franco‐Trecu, Valentina</au><au>Scarabino, Fabrizio</au><au>Sampognaro, Lia</au><au>Rodríguez‐Graña, Laura</au><au>Segura, Angel Manuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Habitat dimensionality and feeding strategies but not temperature as determinants of body size‐trophic structure relationship in a marine food web</atitle><jtitle>The Journal of animal ecology</jtitle><addtitle>J Anim Ecol</addtitle><date>2024-12</date><risdate>2024</risdate><volume>93</volume><issue>12</issue><spage>1910</spage><epage>1923</epage><pages>1910-1923</pages><issn>0021-8790</issn><issn>1365-2656</issn><eissn>1365-2656</eissn><abstract>Disentangling the determinants of trophic structure is central to ecology. The capacity to capture subjugate and consume a prey (i.e. gape limitation) is a relevant limitation to acquire energy for most organisms, especially those in smaller size ranges. This generates a size hierarchy of trophic positions in which large organisms consume small ones. Body size is tightly correlated to gape limitation and explains a large fraction of variance in the body size‐trophic position relationship. However, a considerable fraction of variance still remains to be explained. Consumer search space dimensionality (2D or 3D) and feeding strategies, temperature and the size structure of primary producers can alter the trophic structure, but tests based on information from natural food webs are scarce. We generated specific predictions about the body size trophic position relationship and evaluated them using information from a subtropical South Atlantic coastal marine ecosystem: benthic realm (2D, rocky shore and sandy beach) and the pelagic realm (3D). We characterized this marine coastal food web based on stable isotopes of carbon and nitrogen from 256 samples from primary producers (macroalgae and phytoplankton) to large predators (sand shark) in summer and winter. Consumer body size encompassed six orders of magnitude in weight from 10−2 to 6 × 104 g. Isotopic signal corresponded to an integration of carbon sources from basal consumers to top predators. The body size‐trophic position relationship showed a linear positive association with different slopes for the benthic and pelagic environments. This implies a smaller predator prey size ratio for pelagic (3D) with respect to benthic consumers (2D) as theoretically expected. No seasonal differences were found in slopes and most of the overall variance in benthic environments was largely explained by feeding strategies of the different taxonomic groups. We provide an integrated evaluation on the role of body size, consumer search space and feeding strategy to understand the determinants of trophic position. Results demonstrate that integrating gape limitation hypothesis, the dimensionality of consumer search space and feeding strategies into a formal robust framework to understand trophic structure is feasible even in complex natural ecosystems. Resumen Identificar los determinantes de la estructura trófica es central en ecología. El presente trabajo brinda evidencia empírica sobre el rol del tamaño corporal, la dimensión del espacio de búsqueda de los depredadores y la estrategia de alimentación como determinantes de la posición trófica y su relación con el tamaño. La capacidad de capturar y consumir presas limitado por la apertura de boca es una restricción para la obtención de energía, especialmente en aquellos de pequeño tamaño. Este mecanismo genera una jerarquía de tamaños en la posición trófica de los organismos, donde los grandes consumen a los más pequeños, explicando así gran parte de la variación en la relación tamaño corporal‐posición trófica. Sin embargo, la dimensión espacial en la búsqueda de presas (2D, 3D), la temperatura, las estrategias alimentarias y la productividad primaria del sistema pueden modificar la relación esperada. Esto ha sido escasamente explorado in situ en tramas tróficas naturales. El presente trabajo estableció predicciones específicas en la relación tamaño corporal posición trófica y lo evaluó en diferentes módulos de un ecosistema subtropical marino‐costero de Sudamérica: el ambiente bentónico (2D, costa rocosa y playa arenosa) y pelágico (3D). La estructura trófica se caracterizó mediante isótopos estables de carbono y nitrógeno en 256 organismos, desde productores primarios (macroalgas y fitoplancton) hasta grandes depredadores (tiburón sarda) en verano e invierno. El rango de tamaños corporales abarcó 6 órdenes de magnitud en peso, desde 10−2 a 6 × 104 g. La señal isotópica indicó una integración de fuentes de carbono desde los consumidores primarios hasta los depredadores superiores. Se observó una relación lineal positiva entre el tamaño corporal y la posición trófica, con una pendiente menor para el ambiente pelágico (3D) con respecto al bentónico (2D), coincidente con las predicciones teóricas. No se observaron diferencias estacionales. La relación tamaño corporal y la posición trófica del ambiente bentónico presentó una gran variabilidad, con restricciones diferenciales entre grupos taxonómicos según sus hábitos alimentarios. Esta evaluación basada en el tamaño corporal, el espacio de búsqueda y la estrategia de alimentación permiten comprender los determinantes de la posición trófica. Los resultados demuestran que la integración de la hipótesis de limitación al consumo, el espacio de búsqueda de presas y la estrategia de alimentación es posible, incluso en ecosistemas naturales complejos. It is well known that big fish eat small fish, but how does it change that relationship in 3D environments (the sea) versus 2D (bottom of the sea) environments is not clear. The role of dimensionality of predator search space and feeding strategies (crabs vs. snails) are critical.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>39473277</pmid><doi>10.1111/1365-2656.14199</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1989-8899</orcidid><orcidid>https://orcid.org/0000-0003-1791-010X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8790
ispartof The Journal of animal ecology, 2024-12, Vol.93 (12), p.1910-1923
issn 0021-8790
1365-2656
1365-2656
language eng
recordid cdi_proquest_miscellaneous_3122636272
source MEDLINE; Wiley Online Library All Journals
subjects Algae
Animals
Atlantic Ocean
benthic‐pelagic compartments
Body Size
Body temperature
Carbon
Carbon Isotopes - analysis
Carbon sources
Coastal ecosystems
Coastal structures
Consumers
Ecosystem
Feeding
Feeding Behavior
Food Chain
Food chains
Food webs
gape limitation
Genera
Isotopes
Marine ecology
Marine ecosystems
Natural & organic foods
Nitrogen Isotopes - analysis
Phytoplankton
Phytoplankton - physiology
Predators
predator–prey size scaling
Prey
Searching
Seasonal variations
Seasons
Seaweed - physiology
Sharks - physiology
Southwestern Atlantic
Stable isotopes
Temperature
transitional coastal zone
Two dimensional bodies
title Habitat dimensionality and feeding strategies but not temperature as determinants of body size‐trophic structure relationship in a marine food web
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A30%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Habitat%20dimensionality%20and%20feeding%20strategies%20but%20not%20temperature%20as%20determinants%20of%20body%20size%E2%80%90trophic%20structure%20relationship%20in%20a%20marine%20food%20web&rft.jtitle=The%20Journal%20of%20animal%20ecology&rft.au=Leoni,%20Valentina&rft.date=2024-12&rft.volume=93&rft.issue=12&rft.spage=1910&rft.epage=1923&rft.pages=1910-1923&rft.issn=0021-8790&rft.eissn=1365-2656&rft_id=info:doi/10.1111/1365-2656.14199&rft_dat=%3Cproquest_cross%3E3138997590%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3138997590&rft_id=info:pmid/39473277&rfr_iscdi=true