Improvement of Thermal Stability of Charges in Polylactic Acid Electret Films for Biodegradable Electromechanical Sensors
Eco-friendly sensors fabricated from biocompatible and biodegradable materials are promising candidates for wearable and implantable electronics due to their environmental sustainability and biosafety. This article reports a fully biodegradable electromechanical sensor (FBES) utilizing a sandwich st...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2024-11, Vol.16 (45), p.62680-62692 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 62692 |
---|---|
container_issue | 45 |
container_start_page | 62680 |
container_title | ACS applied materials & interfaces |
container_volume | 16 |
creator | Qin, Yi Ma, Xingchen Ruan, Zehai Xiang, Xinhao Shi, Zhiming Zhou, Lian Hu, Qianqian Zhang, Xiaoqing |
description | Eco-friendly sensors fabricated from biocompatible and biodegradable materials are promising candidates for wearable and implantable electronics due to their environmental sustainability and biosafety. This article reports a fully biodegradable electromechanical sensor (FBES) utilizing a sandwich structure with macro ripple structured polylactic acid (PLA) electret films acting as sensitive layers and molybdenum (Mo) sheets serving as electrodes for a wearable device application. The stability of the space charge stored within the PLA film has been enhanced by introducing an internal cellular structure and improving the polarization process. A macro ripple structure of the PLA layer with higher deformation is a great guarantee for boosting the pressure sensitivity. The results indicate that inserting cell microstructures and optimizing the polarization process significantly improve the charge storage stability of PLA films by nearly 55%. This enhancement is attributed to several factors, including the extended charge drift path of the charges in cellular films, a synergy effect of surface charges, and “macroscopic” dipole charges distributed in the cells. The fabricated sensor achieves a high sensitivity of 1000 pC/kPa, a wide pressure detection range of 0.03–62.4 kPa, and satisfactory stability. Such sensors are not only sensitive to body movements but also to subtle physiological signals, satisfying the diverse needs of wearable healthcare. Importantly, all the composition materials of the sensor can be completely degraded after their service, aligning with the environmentally friendly principles of green development. |
doi_str_mv | 10.1021/acsami.4c13772 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3122633115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3122633115</sourcerecordid><originalsourceid>FETCH-LOGICAL-a248t-2c0ebb7c38c0f3db3a9c299639dd2db573dc01d6f3242bd0a1588edc802889ce3</originalsourceid><addsrcrecordid>eNqNkUtLAzEURoMovrcuJUsRWvOa17IWq0JBQV0PmZs7NpJMajIV-u-d0upOcJVLON-Bez9CLjgbcyb4jYakvR0r4LIoxB455pVSo1JkYv93VuqInKT0wVguBcsOyZGsVCF5Lo7J-tEvY_hCj11PQ0tfFxi9dvSl1411tl9vPqcLHd8xUdvR5-DWTkNvgU7AGnrnEPqIPZ1Z5xNtQ6S3Nhh8j9roxuEOCB5hoTsLGzV2KcR0Rg5a7RKe795T8ja7e50-jOZP94_TyXykhSr7kQCGTVOALIG10jRSVyCqKpeVMcI0WSENMG7yVgolGsM0z8oSDZRMlGUFKE_J1dY77Pm5wtTX3iZA53SHYZVqyTM1ZDJR_AMVIpeS82xAx1sUYkgpYlsvo_U6rmvO6k0z9baZetfMELjcuVeNR_OL_1QxANdbYAjWH2EVu-Eqf9m-AZ0fmgY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3122633115</pqid></control><display><type>article</type><title>Improvement of Thermal Stability of Charges in Polylactic Acid Electret Films for Biodegradable Electromechanical Sensors</title><source>MEDLINE</source><source>ACS Journals</source><creator>Qin, Yi ; Ma, Xingchen ; Ruan, Zehai ; Xiang, Xinhao ; Shi, Zhiming ; Zhou, Lian ; Hu, Qianqian ; Zhang, Xiaoqing</creator><creatorcontrib>Qin, Yi ; Ma, Xingchen ; Ruan, Zehai ; Xiang, Xinhao ; Shi, Zhiming ; Zhou, Lian ; Hu, Qianqian ; Zhang, Xiaoqing</creatorcontrib><description>Eco-friendly sensors fabricated from biocompatible and biodegradable materials are promising candidates for wearable and implantable electronics due to their environmental sustainability and biosafety. This article reports a fully biodegradable electromechanical sensor (FBES) utilizing a sandwich structure with macro ripple structured polylactic acid (PLA) electret films acting as sensitive layers and molybdenum (Mo) sheets serving as electrodes for a wearable device application. The stability of the space charge stored within the PLA film has been enhanced by introducing an internal cellular structure and improving the polarization process. A macro ripple structure of the PLA layer with higher deformation is a great guarantee for boosting the pressure sensitivity. The results indicate that inserting cell microstructures and optimizing the polarization process significantly improve the charge storage stability of PLA films by nearly 55%. This enhancement is attributed to several factors, including the extended charge drift path of the charges in cellular films, a synergy effect of surface charges, and “macroscopic” dipole charges distributed in the cells. The fabricated sensor achieves a high sensitivity of 1000 pC/kPa, a wide pressure detection range of 0.03–62.4 kPa, and satisfactory stability. Such sensors are not only sensitive to body movements but also to subtle physiological signals, satisfying the diverse needs of wearable healthcare. Importantly, all the composition materials of the sensor can be completely degraded after their service, aligning with the environmentally friendly principles of green development.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c13772</identifier><identifier>PMID: 39473162</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Applications of Polymer, Composite, and Coating Materials ; Biocompatible Materials - chemistry ; biodegradability ; biosafety ; cell structures ; deformation ; Electrodes ; electronics ; environmental sustainability ; health services ; Humans ; molybdenum ; Molybdenum - chemistry ; Polyesters - chemistry ; polylactic acid ; storage quality ; Temperature ; thermal stability ; Wearable Electronic Devices</subject><ispartof>ACS applied materials & interfaces, 2024-11, Vol.16 (45), p.62680-62692</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a248t-2c0ebb7c38c0f3db3a9c299639dd2db573dc01d6f3242bd0a1588edc802889ce3</cites><orcidid>0000-0002-1448-2245 ; 0009-0004-0624-6738</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.4c13772$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.4c13772$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2756,27067,27915,27916,56729,56779</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39473162$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qin, Yi</creatorcontrib><creatorcontrib>Ma, Xingchen</creatorcontrib><creatorcontrib>Ruan, Zehai</creatorcontrib><creatorcontrib>Xiang, Xinhao</creatorcontrib><creatorcontrib>Shi, Zhiming</creatorcontrib><creatorcontrib>Zhou, Lian</creatorcontrib><creatorcontrib>Hu, Qianqian</creatorcontrib><creatorcontrib>Zhang, Xiaoqing</creatorcontrib><title>Improvement of Thermal Stability of Charges in Polylactic Acid Electret Films for Biodegradable Electromechanical Sensors</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Eco-friendly sensors fabricated from biocompatible and biodegradable materials are promising candidates for wearable and implantable electronics due to their environmental sustainability and biosafety. This article reports a fully biodegradable electromechanical sensor (FBES) utilizing a sandwich structure with macro ripple structured polylactic acid (PLA) electret films acting as sensitive layers and molybdenum (Mo) sheets serving as electrodes for a wearable device application. The stability of the space charge stored within the PLA film has been enhanced by introducing an internal cellular structure and improving the polarization process. A macro ripple structure of the PLA layer with higher deformation is a great guarantee for boosting the pressure sensitivity. The results indicate that inserting cell microstructures and optimizing the polarization process significantly improve the charge storage stability of PLA films by nearly 55%. This enhancement is attributed to several factors, including the extended charge drift path of the charges in cellular films, a synergy effect of surface charges, and “macroscopic” dipole charges distributed in the cells. The fabricated sensor achieves a high sensitivity of 1000 pC/kPa, a wide pressure detection range of 0.03–62.4 kPa, and satisfactory stability. Such sensors are not only sensitive to body movements but also to subtle physiological signals, satisfying the diverse needs of wearable healthcare. Importantly, all the composition materials of the sensor can be completely degraded after their service, aligning with the environmentally friendly principles of green development.</description><subject>Applications of Polymer, Composite, and Coating Materials</subject><subject>Biocompatible Materials - chemistry</subject><subject>biodegradability</subject><subject>biosafety</subject><subject>cell structures</subject><subject>deformation</subject><subject>Electrodes</subject><subject>electronics</subject><subject>environmental sustainability</subject><subject>health services</subject><subject>Humans</subject><subject>molybdenum</subject><subject>Molybdenum - chemistry</subject><subject>Polyesters - chemistry</subject><subject>polylactic acid</subject><subject>storage quality</subject><subject>Temperature</subject><subject>thermal stability</subject><subject>Wearable Electronic Devices</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUtLAzEURoMovrcuJUsRWvOa17IWq0JBQV0PmZs7NpJMajIV-u-d0upOcJVLON-Bez9CLjgbcyb4jYakvR0r4LIoxB455pVSo1JkYv93VuqInKT0wVguBcsOyZGsVCF5Lo7J-tEvY_hCj11PQ0tfFxi9dvSl1411tl9vPqcLHd8xUdvR5-DWTkNvgU7AGnrnEPqIPZ1Z5xNtQ6S3Nhh8j9roxuEOCB5hoTsLGzV2KcR0Rg5a7RKe795T8ja7e50-jOZP94_TyXykhSr7kQCGTVOALIG10jRSVyCqKpeVMcI0WSENMG7yVgolGsM0z8oSDZRMlGUFKE_J1dY77Pm5wtTX3iZA53SHYZVqyTM1ZDJR_AMVIpeS82xAx1sUYkgpYlsvo_U6rmvO6k0z9baZetfMELjcuVeNR_OL_1QxANdbYAjWH2EVu-Eqf9m-AZ0fmgY</recordid><startdate>20241113</startdate><enddate>20241113</enddate><creator>Qin, Yi</creator><creator>Ma, Xingchen</creator><creator>Ruan, Zehai</creator><creator>Xiang, Xinhao</creator><creator>Shi, Zhiming</creator><creator>Zhou, Lian</creator><creator>Hu, Qianqian</creator><creator>Zhang, Xiaoqing</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-1448-2245</orcidid><orcidid>https://orcid.org/0009-0004-0624-6738</orcidid></search><sort><creationdate>20241113</creationdate><title>Improvement of Thermal Stability of Charges in Polylactic Acid Electret Films for Biodegradable Electromechanical Sensors</title><author>Qin, Yi ; Ma, Xingchen ; Ruan, Zehai ; Xiang, Xinhao ; Shi, Zhiming ; Zhou, Lian ; Hu, Qianqian ; Zhang, Xiaoqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a248t-2c0ebb7c38c0f3db3a9c299639dd2db573dc01d6f3242bd0a1588edc802889ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Applications of Polymer, Composite, and Coating Materials</topic><topic>Biocompatible Materials - chemistry</topic><topic>biodegradability</topic><topic>biosafety</topic><topic>cell structures</topic><topic>deformation</topic><topic>Electrodes</topic><topic>electronics</topic><topic>environmental sustainability</topic><topic>health services</topic><topic>Humans</topic><topic>molybdenum</topic><topic>Molybdenum - chemistry</topic><topic>Polyesters - chemistry</topic><topic>polylactic acid</topic><topic>storage quality</topic><topic>Temperature</topic><topic>thermal stability</topic><topic>Wearable Electronic Devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qin, Yi</creatorcontrib><creatorcontrib>Ma, Xingchen</creatorcontrib><creatorcontrib>Ruan, Zehai</creatorcontrib><creatorcontrib>Xiang, Xinhao</creatorcontrib><creatorcontrib>Shi, Zhiming</creatorcontrib><creatorcontrib>Zhou, Lian</creatorcontrib><creatorcontrib>Hu, Qianqian</creatorcontrib><creatorcontrib>Zhang, Xiaoqing</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qin, Yi</au><au>Ma, Xingchen</au><au>Ruan, Zehai</au><au>Xiang, Xinhao</au><au>Shi, Zhiming</au><au>Zhou, Lian</au><au>Hu, Qianqian</au><au>Zhang, Xiaoqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improvement of Thermal Stability of Charges in Polylactic Acid Electret Films for Biodegradable Electromechanical Sensors</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-11-13</date><risdate>2024</risdate><volume>16</volume><issue>45</issue><spage>62680</spage><epage>62692</epage><pages>62680-62692</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>Eco-friendly sensors fabricated from biocompatible and biodegradable materials are promising candidates for wearable and implantable electronics due to their environmental sustainability and biosafety. This article reports a fully biodegradable electromechanical sensor (FBES) utilizing a sandwich structure with macro ripple structured polylactic acid (PLA) electret films acting as sensitive layers and molybdenum (Mo) sheets serving as electrodes for a wearable device application. The stability of the space charge stored within the PLA film has been enhanced by introducing an internal cellular structure and improving the polarization process. A macro ripple structure of the PLA layer with higher deformation is a great guarantee for boosting the pressure sensitivity. The results indicate that inserting cell microstructures and optimizing the polarization process significantly improve the charge storage stability of PLA films by nearly 55%. This enhancement is attributed to several factors, including the extended charge drift path of the charges in cellular films, a synergy effect of surface charges, and “macroscopic” dipole charges distributed in the cells. The fabricated sensor achieves a high sensitivity of 1000 pC/kPa, a wide pressure detection range of 0.03–62.4 kPa, and satisfactory stability. Such sensors are not only sensitive to body movements but also to subtle physiological signals, satisfying the diverse needs of wearable healthcare. Importantly, all the composition materials of the sensor can be completely degraded after their service, aligning with the environmentally friendly principles of green development.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39473162</pmid><doi>10.1021/acsami.4c13772</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1448-2245</orcidid><orcidid>https://orcid.org/0009-0004-0624-6738</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2024-11, Vol.16 (45), p.62680-62692 |
issn | 1944-8244 1944-8252 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_3122633115 |
source | MEDLINE; ACS Journals |
subjects | Applications of Polymer, Composite, and Coating Materials Biocompatible Materials - chemistry biodegradability biosafety cell structures deformation Electrodes electronics environmental sustainability health services Humans molybdenum Molybdenum - chemistry Polyesters - chemistry polylactic acid storage quality Temperature thermal stability Wearable Electronic Devices |
title | Improvement of Thermal Stability of Charges in Polylactic Acid Electret Films for Biodegradable Electromechanical Sensors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T18%3A53%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improvement%20of%20Thermal%20Stability%20of%20Charges%20in%20Polylactic%20Acid%20Electret%20Films%20for%20Biodegradable%20Electromechanical%20Sensors&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Qin,%20Yi&rft.date=2024-11-13&rft.volume=16&rft.issue=45&rft.spage=62680&rft.epage=62692&rft.pages=62680-62692&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c13772&rft_dat=%3Cproquest_cross%3E3122633115%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3122633115&rft_id=info:pmid/39473162&rfr_iscdi=true |