Scaling Effects of the Weissenberg Number in Electrokinetic Oldroyd-B Fluid Flow Within a Microchannel

This study attempts to extend previous research on electrokinetic turbulence (EKT) in Oldroyd-B fluid by investigating the relationship between the Weissenberg number ( ) and the second-order velocity structure function ( ) under applied electric fields. Inspired by Sasmal's demonstration in Sa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrophoresis 2024-10
Hauptverfasser: Mukherjee, Satwik, Pal, Sanjib Kr, Gopmandal, Partha P, Sarkar, Sankar
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Electrophoresis
container_volume
creator Mukherjee, Satwik
Pal, Sanjib Kr
Gopmandal, Partha P
Sarkar, Sankar
description This study attempts to extend previous research on electrokinetic turbulence (EKT) in Oldroyd-B fluid by investigating the relationship between the Weissenberg number ( ) and the second-order velocity structure function ( ) under applied electric fields. Inspired by Sasmal's demonstration in Sasmal (2022) of how heterogeneous zeta potentials induce turbulence above a critical , we develop a mathematical framework linking to turbulent phenomena. Our analysis incorporates recent findings on AC (Zhao & Wang, 2017) and DC (Zhao & Wang 2019) EKT, which have defined scaling laws for velocity and scalar structure functions in the forced cascade region. Our finding shows that and , for a length scale , and , where is a velocity fluctuations quantity and denotes the time relaxation parameter. This work establishes a positive correlation between and turbulent flow phenomena through a rigorous analysis of velocity structure functions, thereby offering a mathematical foundation for building the design and optimization of EKT-based microfluidic devices.
doi_str_mv 10.1002/elps.202400175
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3121591484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3121591484</sourcerecordid><originalsourceid>FETCH-LOGICAL-c220t-ae203229bda757de60458ab77b819be44f4799dab79971149ae718d00669e34e3</originalsourceid><addsrcrecordid>eNo9kD1PwzAQhi0EoqWwMiKPLCnnj8TxCFULSIUOgDpGTnJpDW5S4kSo_x5XLSz3SqfnXp0eQq4ZjBkAv0O39WMOXAIwFZ-QIYs5j3iSilMyDCsRQSriAbnw_hMApJbynAyElgoYj4ekeiuMs_WKTqsKi87TpqLdGukSrfdY59iu6Gu_CUltTacuMG3zZWvsbEEXrmybXRk90JnrbRlm80OXtlsH1NAXW7RNsTZ1je6SnFXGebw65oh8zKbvk6dovnh8ntzPo4Jz6CKDHATnOi-NilWJCcg4NblSecp0jlJWUmldho3WijGpDSqWlgBJolFIFCNye-jdts13j77LNtYX6Jypsel9JhhnsWYylQEdH9DwpfctVtm2tRvT7jIG2d5ttneb_bsNBzfH7j7fYPmP_8kUvyP8dJc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3121591484</pqid></control><display><type>article</type><title>Scaling Effects of the Weissenberg Number in Electrokinetic Oldroyd-B Fluid Flow Within a Microchannel</title><source>Wiley Online Library All Journals</source><creator>Mukherjee, Satwik ; Pal, Sanjib Kr ; Gopmandal, Partha P ; Sarkar, Sankar</creator><creatorcontrib>Mukherjee, Satwik ; Pal, Sanjib Kr ; Gopmandal, Partha P ; Sarkar, Sankar</creatorcontrib><description>This study attempts to extend previous research on electrokinetic turbulence (EKT) in Oldroyd-B fluid by investigating the relationship between the Weissenberg number ( ) and the second-order velocity structure function ( ) under applied electric fields. Inspired by Sasmal's demonstration in Sasmal (2022) of how heterogeneous zeta potentials induce turbulence above a critical , we develop a mathematical framework linking to turbulent phenomena. Our analysis incorporates recent findings on AC (Zhao &amp; Wang, 2017) and DC (Zhao &amp; Wang 2019) EKT, which have defined scaling laws for velocity and scalar structure functions in the forced cascade region. Our finding shows that and , for a length scale , and , where is a velocity fluctuations quantity and denotes the time relaxation parameter. This work establishes a positive correlation between and turbulent flow phenomena through a rigorous analysis of velocity structure functions, thereby offering a mathematical foundation for building the design and optimization of EKT-based microfluidic devices.</description><identifier>ISSN: 0173-0835</identifier><identifier>ISSN: 1522-2683</identifier><identifier>EISSN: 1522-2683</identifier><identifier>DOI: 10.1002/elps.202400175</identifier><identifier>PMID: 39470125</identifier><language>eng</language><publisher>Germany</publisher><ispartof>Electrophoresis, 2024-10</ispartof><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c220t-ae203229bda757de60458ab77b819be44f4799dab79971149ae718d00669e34e3</cites><orcidid>0000-0003-1518-6664 ; 0009-0004-8267-8567</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27931,27932</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39470125$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mukherjee, Satwik</creatorcontrib><creatorcontrib>Pal, Sanjib Kr</creatorcontrib><creatorcontrib>Gopmandal, Partha P</creatorcontrib><creatorcontrib>Sarkar, Sankar</creatorcontrib><title>Scaling Effects of the Weissenberg Number in Electrokinetic Oldroyd-B Fluid Flow Within a Microchannel</title><title>Electrophoresis</title><addtitle>Electrophoresis</addtitle><description>This study attempts to extend previous research on electrokinetic turbulence (EKT) in Oldroyd-B fluid by investigating the relationship between the Weissenberg number ( ) and the second-order velocity structure function ( ) under applied electric fields. Inspired by Sasmal's demonstration in Sasmal (2022) of how heterogeneous zeta potentials induce turbulence above a critical , we develop a mathematical framework linking to turbulent phenomena. Our analysis incorporates recent findings on AC (Zhao &amp; Wang, 2017) and DC (Zhao &amp; Wang 2019) EKT, which have defined scaling laws for velocity and scalar structure functions in the forced cascade region. Our finding shows that and , for a length scale , and , where is a velocity fluctuations quantity and denotes the time relaxation parameter. This work establishes a positive correlation between and turbulent flow phenomena through a rigorous analysis of velocity structure functions, thereby offering a mathematical foundation for building the design and optimization of EKT-based microfluidic devices.</description><issn>0173-0835</issn><issn>1522-2683</issn><issn>1522-2683</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kD1PwzAQhi0EoqWwMiKPLCnnj8TxCFULSIUOgDpGTnJpDW5S4kSo_x5XLSz3SqfnXp0eQq4ZjBkAv0O39WMOXAIwFZ-QIYs5j3iSilMyDCsRQSriAbnw_hMApJbynAyElgoYj4ekeiuMs_WKTqsKi87TpqLdGukSrfdY59iu6Gu_CUltTacuMG3zZWvsbEEXrmybXRk90JnrbRlm80OXtlsH1NAXW7RNsTZ1je6SnFXGebw65oh8zKbvk6dovnh8ntzPo4Jz6CKDHATnOi-NilWJCcg4NblSecp0jlJWUmldho3WijGpDSqWlgBJolFIFCNye-jdts13j77LNtYX6Jypsel9JhhnsWYylQEdH9DwpfctVtm2tRvT7jIG2d5ttneb_bsNBzfH7j7fYPmP_8kUvyP8dJc</recordid><startdate>20241029</startdate><enddate>20241029</enddate><creator>Mukherjee, Satwik</creator><creator>Pal, Sanjib Kr</creator><creator>Gopmandal, Partha P</creator><creator>Sarkar, Sankar</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1518-6664</orcidid><orcidid>https://orcid.org/0009-0004-8267-8567</orcidid></search><sort><creationdate>20241029</creationdate><title>Scaling Effects of the Weissenberg Number in Electrokinetic Oldroyd-B Fluid Flow Within a Microchannel</title><author>Mukherjee, Satwik ; Pal, Sanjib Kr ; Gopmandal, Partha P ; Sarkar, Sankar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c220t-ae203229bda757de60458ab77b819be44f4799dab79971149ae718d00669e34e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mukherjee, Satwik</creatorcontrib><creatorcontrib>Pal, Sanjib Kr</creatorcontrib><creatorcontrib>Gopmandal, Partha P</creatorcontrib><creatorcontrib>Sarkar, Sankar</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Electrophoresis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mukherjee, Satwik</au><au>Pal, Sanjib Kr</au><au>Gopmandal, Partha P</au><au>Sarkar, Sankar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scaling Effects of the Weissenberg Number in Electrokinetic Oldroyd-B Fluid Flow Within a Microchannel</atitle><jtitle>Electrophoresis</jtitle><addtitle>Electrophoresis</addtitle><date>2024-10-29</date><risdate>2024</risdate><issn>0173-0835</issn><issn>1522-2683</issn><eissn>1522-2683</eissn><abstract>This study attempts to extend previous research on electrokinetic turbulence (EKT) in Oldroyd-B fluid by investigating the relationship between the Weissenberg number ( ) and the second-order velocity structure function ( ) under applied electric fields. Inspired by Sasmal's demonstration in Sasmal (2022) of how heterogeneous zeta potentials induce turbulence above a critical , we develop a mathematical framework linking to turbulent phenomena. Our analysis incorporates recent findings on AC (Zhao &amp; Wang, 2017) and DC (Zhao &amp; Wang 2019) EKT, which have defined scaling laws for velocity and scalar structure functions in the forced cascade region. Our finding shows that and , for a length scale , and , where is a velocity fluctuations quantity and denotes the time relaxation parameter. This work establishes a positive correlation between and turbulent flow phenomena through a rigorous analysis of velocity structure functions, thereby offering a mathematical foundation for building the design and optimization of EKT-based microfluidic devices.</abstract><cop>Germany</cop><pmid>39470125</pmid><doi>10.1002/elps.202400175</doi><orcidid>https://orcid.org/0000-0003-1518-6664</orcidid><orcidid>https://orcid.org/0009-0004-8267-8567</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0173-0835
ispartof Electrophoresis, 2024-10
issn 0173-0835
1522-2683
1522-2683
language eng
recordid cdi_proquest_miscellaneous_3121591484
source Wiley Online Library All Journals
title Scaling Effects of the Weissenberg Number in Electrokinetic Oldroyd-B Fluid Flow Within a Microchannel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T00%3A10%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scaling%20Effects%20of%20the%20Weissenberg%20Number%20in%20Electrokinetic%20Oldroyd-B%20Fluid%20Flow%20Within%20a%20Microchannel&rft.jtitle=Electrophoresis&rft.au=Mukherjee,%20Satwik&rft.date=2024-10-29&rft.issn=0173-0835&rft.eissn=1522-2683&rft_id=info:doi/10.1002/elps.202400175&rft_dat=%3Cproquest_cross%3E3121591484%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3121591484&rft_id=info:pmid/39470125&rfr_iscdi=true