Group Integrative Dynamic Factor Models With Application to Multiple Subject Brain Connectivity
ABSTRACT This work introduces a novel framework for dynamic factor model‐based group‐level analysis of multiple subjects time‐series data, called GRoup Integrative DYnamic factor (GRIDY) models. The framework identifies and characterizes intersubject similarities and differences between two predeter...
Gespeichert in:
Veröffentlicht in: | Biometrical journal 2024-12, Vol.66 (8), p.e202300370-n/a |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 8 |
container_start_page | e202300370 |
container_title | Biometrical journal |
container_volume | 66 |
creator | Kim, Younghoon Fisher, Zachary F. Pipiras, Vladas |
description | ABSTRACT
This work introduces a novel framework for dynamic factor model‐based group‐level analysis of multiple subjects time‐series data, called GRoup Integrative DYnamic factor (GRIDY) models. The framework identifies and characterizes intersubject similarities and differences between two predetermined groups by considering a combination of group spatial information and individual temporal dynamics. Furthermore, it enables the identification of intrasubject similarities and differences over time by employing different model configurations for each subject. Methodologically, the framework combines a novel principal angle‐based rank selection algorithm and a noniterative integrative analysis framework. Inspired by simultaneous component analysis, this approach also reconstructs identifiable latent factor series with flexible covariance structures. The performance of the GRIDY models is evaluated through simulations conducted under various scenarios. An application is also presented to compare resting‐state functional MRI data collected from multiple subjects in autism spectrum disorder and control groups. |
doi_str_mv | 10.1002/bimj.202300370 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3121590888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3135037613</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2936-4c173b0cceb32f06d5a8f6be118d70ca583d97ec7091cc645d46d0b78a46ea5d3</originalsourceid><addsrcrecordid>eNqF0L9v3CAYxnEUtUquadeOEVKXLL6-8GJsj8nlR6_KqUNbdUQYcw0n2ziAU91_X6JLM2TphJA-PEJfQj4yWDIA_rl1w27JgSMAVnBEFqzkrBCA8g1ZAHIssBbVCXkX4w4AGhD8mJxgIypgyBZE3QY_T3Q9Jvs76OQeLb3aj3pwht5ok3ygG9_ZPtJfLt3Ti2nqncnMjzR5upn75Kbe0u9zu7Mm0cug3UhXfhzzzT26tH9P3m51H-2H5_OU_Ly5_rH6Utx9u12vLu4KwxuUhTCswhaMsS3yLciu1PVWtpaxuqvA6LLGrqmsqaBhxkhRdkJ20Fa1FtLqssNTcn7YnYJ_mG1ManDR2L7Xo_VzVMg4Kxuo6zrTT6_ozs9hzL_LCsvcUTLManlQJvgYg92qKbhBh71ioJ7Sq6f06iV9fnD2PDu3g-1e-L_WGYgD-ON6u__PnLpcb75yySX-Bcz3jwA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3135037613</pqid></control><display><type>article</type><title>Group Integrative Dynamic Factor Models With Application to Multiple Subject Brain Connectivity</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Kim, Younghoon ; Fisher, Zachary F. ; Pipiras, Vladas</creator><creatorcontrib>Kim, Younghoon ; Fisher, Zachary F. ; Pipiras, Vladas</creatorcontrib><description>ABSTRACT
This work introduces a novel framework for dynamic factor model‐based group‐level analysis of multiple subjects time‐series data, called GRoup Integrative DYnamic factor (GRIDY) models. The framework identifies and characterizes intersubject similarities and differences between two predetermined groups by considering a combination of group spatial information and individual temporal dynamics. Furthermore, it enables the identification of intrasubject similarities and differences over time by employing different model configurations for each subject. Methodologically, the framework combines a novel principal angle‐based rank selection algorithm and a noniterative integrative analysis framework. Inspired by simultaneous component analysis, this approach also reconstructs identifiable latent factor series with flexible covariance structures. The performance of the GRIDY models is evaluated through simulations conducted under various scenarios. An application is also presented to compare resting‐state functional MRI data collected from multiple subjects in autism spectrum disorder and control groups.</description><identifier>ISSN: 0323-3847</identifier><identifier>ISSN: 1521-4036</identifier><identifier>EISSN: 1521-4036</identifier><identifier>DOI: 10.1002/bimj.202300370</identifier><identifier>PMID: 39470131</identifier><language>eng</language><publisher>Germany: Wiley - VCH Verlag GmbH & Co. KGaA</publisher><subject>Algorithms ; Autism ; Autism Spectrum Disorder - diagnostic imaging ; Autism Spectrum Disorder - physiopathology ; Biometry - methods ; Brain - diagnostic imaging ; dynamic factor model ; Dynamic structural analysis ; fMRI ; Functional magnetic resonance imaging ; Group dynamics ; group‐level analysis ; high‐dimensional time series ; Humans ; Magnetic Resonance Imaging ; Models, Statistical ; multiway analysis ; Neural networks ; principal angles ; Similarity ; Spatial data</subject><ispartof>Biometrical journal, 2024-12, Vol.66 (8), p.e202300370-n/a</ispartof><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2936-4c173b0cceb32f06d5a8f6be118d70ca583d97ec7091cc645d46d0b78a46ea5d3</cites><orcidid>0009-0007-0117-5530</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbimj.202300370$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbimj.202300370$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39470131$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Younghoon</creatorcontrib><creatorcontrib>Fisher, Zachary F.</creatorcontrib><creatorcontrib>Pipiras, Vladas</creatorcontrib><title>Group Integrative Dynamic Factor Models With Application to Multiple Subject Brain Connectivity</title><title>Biometrical journal</title><addtitle>Biom J</addtitle><description>ABSTRACT
This work introduces a novel framework for dynamic factor model‐based group‐level analysis of multiple subjects time‐series data, called GRoup Integrative DYnamic factor (GRIDY) models. The framework identifies and characterizes intersubject similarities and differences between two predetermined groups by considering a combination of group spatial information and individual temporal dynamics. Furthermore, it enables the identification of intrasubject similarities and differences over time by employing different model configurations for each subject. Methodologically, the framework combines a novel principal angle‐based rank selection algorithm and a noniterative integrative analysis framework. Inspired by simultaneous component analysis, this approach also reconstructs identifiable latent factor series with flexible covariance structures. The performance of the GRIDY models is evaluated through simulations conducted under various scenarios. An application is also presented to compare resting‐state functional MRI data collected from multiple subjects in autism spectrum disorder and control groups.</description><subject>Algorithms</subject><subject>Autism</subject><subject>Autism Spectrum Disorder - diagnostic imaging</subject><subject>Autism Spectrum Disorder - physiopathology</subject><subject>Biometry - methods</subject><subject>Brain - diagnostic imaging</subject><subject>dynamic factor model</subject><subject>Dynamic structural analysis</subject><subject>fMRI</subject><subject>Functional magnetic resonance imaging</subject><subject>Group dynamics</subject><subject>group‐level analysis</subject><subject>high‐dimensional time series</subject><subject>Humans</subject><subject>Magnetic Resonance Imaging</subject><subject>Models, Statistical</subject><subject>multiway analysis</subject><subject>Neural networks</subject><subject>principal angles</subject><subject>Similarity</subject><subject>Spatial data</subject><issn>0323-3847</issn><issn>1521-4036</issn><issn>1521-4036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0L9v3CAYxnEUtUquadeOEVKXLL6-8GJsj8nlR6_KqUNbdUQYcw0n2ziAU91_X6JLM2TphJA-PEJfQj4yWDIA_rl1w27JgSMAVnBEFqzkrBCA8g1ZAHIssBbVCXkX4w4AGhD8mJxgIypgyBZE3QY_T3Q9Jvs76OQeLb3aj3pwht5ok3ygG9_ZPtJfLt3Ti2nqncnMjzR5upn75Kbe0u9zu7Mm0cug3UhXfhzzzT26tH9P3m51H-2H5_OU_Ly5_rH6Utx9u12vLu4KwxuUhTCswhaMsS3yLciu1PVWtpaxuqvA6LLGrqmsqaBhxkhRdkJ20Fa1FtLqssNTcn7YnYJ_mG1ManDR2L7Xo_VzVMg4Kxuo6zrTT6_ozs9hzL_LCsvcUTLManlQJvgYg92qKbhBh71ioJ7Sq6f06iV9fnD2PDu3g-1e-L_WGYgD-ON6u__PnLpcb75yySX-Bcz3jwA</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Kim, Younghoon</creator><creator>Fisher, Zachary F.</creator><creator>Pipiras, Vladas</creator><general>Wiley - VCH Verlag GmbH & Co. KGaA</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0007-0117-5530</orcidid></search><sort><creationdate>202412</creationdate><title>Group Integrative Dynamic Factor Models With Application to Multiple Subject Brain Connectivity</title><author>Kim, Younghoon ; Fisher, Zachary F. ; Pipiras, Vladas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2936-4c173b0cceb32f06d5a8f6be118d70ca583d97ec7091cc645d46d0b78a46ea5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Autism</topic><topic>Autism Spectrum Disorder - diagnostic imaging</topic><topic>Autism Spectrum Disorder - physiopathology</topic><topic>Biometry - methods</topic><topic>Brain - diagnostic imaging</topic><topic>dynamic factor model</topic><topic>Dynamic structural analysis</topic><topic>fMRI</topic><topic>Functional magnetic resonance imaging</topic><topic>Group dynamics</topic><topic>group‐level analysis</topic><topic>high‐dimensional time series</topic><topic>Humans</topic><topic>Magnetic Resonance Imaging</topic><topic>Models, Statistical</topic><topic>multiway analysis</topic><topic>Neural networks</topic><topic>principal angles</topic><topic>Similarity</topic><topic>Spatial data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Younghoon</creatorcontrib><creatorcontrib>Fisher, Zachary F.</creatorcontrib><creatorcontrib>Pipiras, Vladas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biometrical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Younghoon</au><au>Fisher, Zachary F.</au><au>Pipiras, Vladas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Group Integrative Dynamic Factor Models With Application to Multiple Subject Brain Connectivity</atitle><jtitle>Biometrical journal</jtitle><addtitle>Biom J</addtitle><date>2024-12</date><risdate>2024</risdate><volume>66</volume><issue>8</issue><spage>e202300370</spage><epage>n/a</epage><pages>e202300370-n/a</pages><issn>0323-3847</issn><issn>1521-4036</issn><eissn>1521-4036</eissn><abstract>ABSTRACT
This work introduces a novel framework for dynamic factor model‐based group‐level analysis of multiple subjects time‐series data, called GRoup Integrative DYnamic factor (GRIDY) models. The framework identifies and characterizes intersubject similarities and differences between two predetermined groups by considering a combination of group spatial information and individual temporal dynamics. Furthermore, it enables the identification of intrasubject similarities and differences over time by employing different model configurations for each subject. Methodologically, the framework combines a novel principal angle‐based rank selection algorithm and a noniterative integrative analysis framework. Inspired by simultaneous component analysis, this approach also reconstructs identifiable latent factor series with flexible covariance structures. The performance of the GRIDY models is evaluated through simulations conducted under various scenarios. An application is also presented to compare resting‐state functional MRI data collected from multiple subjects in autism spectrum disorder and control groups.</abstract><cop>Germany</cop><pub>Wiley - VCH Verlag GmbH & Co. KGaA</pub><pmid>39470131</pmid><doi>10.1002/bimj.202300370</doi><tpages>21</tpages><orcidid>https://orcid.org/0009-0007-0117-5530</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0323-3847 |
ispartof | Biometrical journal, 2024-12, Vol.66 (8), p.e202300370-n/a |
issn | 0323-3847 1521-4036 1521-4036 |
language | eng |
recordid | cdi_proquest_miscellaneous_3121590888 |
source | MEDLINE; Wiley Journals |
subjects | Algorithms Autism Autism Spectrum Disorder - diagnostic imaging Autism Spectrum Disorder - physiopathology Biometry - methods Brain - diagnostic imaging dynamic factor model Dynamic structural analysis fMRI Functional magnetic resonance imaging Group dynamics group‐level analysis high‐dimensional time series Humans Magnetic Resonance Imaging Models, Statistical multiway analysis Neural networks principal angles Similarity Spatial data |
title | Group Integrative Dynamic Factor Models With Application to Multiple Subject Brain Connectivity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A50%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Group%20Integrative%20Dynamic%20Factor%20Models%20With%20Application%20to%20Multiple%20Subject%20Brain%20Connectivity&rft.jtitle=Biometrical%20journal&rft.au=Kim,%20Younghoon&rft.date=2024-12&rft.volume=66&rft.issue=8&rft.spage=e202300370&rft.epage=n/a&rft.pages=e202300370-n/a&rft.issn=0323-3847&rft.eissn=1521-4036&rft_id=info:doi/10.1002/bimj.202300370&rft_dat=%3Cproquest_cross%3E3135037613%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3135037613&rft_id=info:pmid/39470131&rfr_iscdi=true |