Group Integrative Dynamic Factor Models With Application to Multiple Subject Brain Connectivity

ABSTRACT This work introduces a novel framework for dynamic factor model‐based group‐level analysis of multiple subjects time‐series data, called GRoup Integrative DYnamic factor (GRIDY) models. The framework identifies and characterizes intersubject similarities and differences between two predeter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrical journal 2024-12, Vol.66 (8), p.e202300370-n/a
Hauptverfasser: Kim, Younghoon, Fisher, Zachary F., Pipiras, Vladas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 8
container_start_page e202300370
container_title Biometrical journal
container_volume 66
creator Kim, Younghoon
Fisher, Zachary F.
Pipiras, Vladas
description ABSTRACT This work introduces a novel framework for dynamic factor model‐based group‐level analysis of multiple subjects time‐series data, called GRoup Integrative DYnamic factor (GRIDY) models. The framework identifies and characterizes intersubject similarities and differences between two predetermined groups by considering a combination of group spatial information and individual temporal dynamics. Furthermore, it enables the identification of intrasubject similarities and differences over time by employing different model configurations for each subject. Methodologically, the framework combines a novel principal angle‐based rank selection algorithm and a noniterative integrative analysis framework. Inspired by simultaneous component analysis, this approach also reconstructs identifiable latent factor series with flexible covariance structures. The performance of the GRIDY models is evaluated through simulations conducted under various scenarios. An application is also presented to compare resting‐state functional MRI data collected from multiple subjects in autism spectrum disorder and control groups.
doi_str_mv 10.1002/bimj.202300370
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3121590888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3135037613</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2936-4c173b0cceb32f06d5a8f6be118d70ca583d97ec7091cc645d46d0b78a46ea5d3</originalsourceid><addsrcrecordid>eNqF0L9v3CAYxnEUtUquadeOEVKXLL6-8GJsj8nlR6_KqUNbdUQYcw0n2ziAU91_X6JLM2TphJA-PEJfQj4yWDIA_rl1w27JgSMAVnBEFqzkrBCA8g1ZAHIssBbVCXkX4w4AGhD8mJxgIypgyBZE3QY_T3Q9Jvs76OQeLb3aj3pwht5ok3ygG9_ZPtJfLt3Ti2nqncnMjzR5upn75Kbe0u9zu7Mm0cug3UhXfhzzzT26tH9P3m51H-2H5_OU_Ly5_rH6Utx9u12vLu4KwxuUhTCswhaMsS3yLciu1PVWtpaxuqvA6LLGrqmsqaBhxkhRdkJ20Fa1FtLqssNTcn7YnYJ_mG1ManDR2L7Xo_VzVMg4Kxuo6zrTT6_ozs9hzL_LCsvcUTLManlQJvgYg92qKbhBh71ioJ7Sq6f06iV9fnD2PDu3g-1e-L_WGYgD-ON6u__PnLpcb75yySX-Bcz3jwA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3135037613</pqid></control><display><type>article</type><title>Group Integrative Dynamic Factor Models With Application to Multiple Subject Brain Connectivity</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Kim, Younghoon ; Fisher, Zachary F. ; Pipiras, Vladas</creator><creatorcontrib>Kim, Younghoon ; Fisher, Zachary F. ; Pipiras, Vladas</creatorcontrib><description>ABSTRACT This work introduces a novel framework for dynamic factor model‐based group‐level analysis of multiple subjects time‐series data, called GRoup Integrative DYnamic factor (GRIDY) models. The framework identifies and characterizes intersubject similarities and differences between two predetermined groups by considering a combination of group spatial information and individual temporal dynamics. Furthermore, it enables the identification of intrasubject similarities and differences over time by employing different model configurations for each subject. Methodologically, the framework combines a novel principal angle‐based rank selection algorithm and a noniterative integrative analysis framework. Inspired by simultaneous component analysis, this approach also reconstructs identifiable latent factor series with flexible covariance structures. The performance of the GRIDY models is evaluated through simulations conducted under various scenarios. An application is also presented to compare resting‐state functional MRI data collected from multiple subjects in autism spectrum disorder and control groups.</description><identifier>ISSN: 0323-3847</identifier><identifier>ISSN: 1521-4036</identifier><identifier>EISSN: 1521-4036</identifier><identifier>DOI: 10.1002/bimj.202300370</identifier><identifier>PMID: 39470131</identifier><language>eng</language><publisher>Germany: Wiley - VCH Verlag GmbH &amp; Co. KGaA</publisher><subject>Algorithms ; Autism ; Autism Spectrum Disorder - diagnostic imaging ; Autism Spectrum Disorder - physiopathology ; Biometry - methods ; Brain - diagnostic imaging ; dynamic factor model ; Dynamic structural analysis ; fMRI ; Functional magnetic resonance imaging ; Group dynamics ; group‐level analysis ; high‐dimensional time series ; Humans ; Magnetic Resonance Imaging ; Models, Statistical ; multiway analysis ; Neural networks ; principal angles ; Similarity ; Spatial data</subject><ispartof>Biometrical journal, 2024-12, Vol.66 (8), p.e202300370-n/a</ispartof><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2936-4c173b0cceb32f06d5a8f6be118d70ca583d97ec7091cc645d46d0b78a46ea5d3</cites><orcidid>0009-0007-0117-5530</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbimj.202300370$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbimj.202300370$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39470131$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Younghoon</creatorcontrib><creatorcontrib>Fisher, Zachary F.</creatorcontrib><creatorcontrib>Pipiras, Vladas</creatorcontrib><title>Group Integrative Dynamic Factor Models With Application to Multiple Subject Brain Connectivity</title><title>Biometrical journal</title><addtitle>Biom J</addtitle><description>ABSTRACT This work introduces a novel framework for dynamic factor model‐based group‐level analysis of multiple subjects time‐series data, called GRoup Integrative DYnamic factor (GRIDY) models. The framework identifies and characterizes intersubject similarities and differences between two predetermined groups by considering a combination of group spatial information and individual temporal dynamics. Furthermore, it enables the identification of intrasubject similarities and differences over time by employing different model configurations for each subject. Methodologically, the framework combines a novel principal angle‐based rank selection algorithm and a noniterative integrative analysis framework. Inspired by simultaneous component analysis, this approach also reconstructs identifiable latent factor series with flexible covariance structures. The performance of the GRIDY models is evaluated through simulations conducted under various scenarios. An application is also presented to compare resting‐state functional MRI data collected from multiple subjects in autism spectrum disorder and control groups.</description><subject>Algorithms</subject><subject>Autism</subject><subject>Autism Spectrum Disorder - diagnostic imaging</subject><subject>Autism Spectrum Disorder - physiopathology</subject><subject>Biometry - methods</subject><subject>Brain - diagnostic imaging</subject><subject>dynamic factor model</subject><subject>Dynamic structural analysis</subject><subject>fMRI</subject><subject>Functional magnetic resonance imaging</subject><subject>Group dynamics</subject><subject>group‐level analysis</subject><subject>high‐dimensional time series</subject><subject>Humans</subject><subject>Magnetic Resonance Imaging</subject><subject>Models, Statistical</subject><subject>multiway analysis</subject><subject>Neural networks</subject><subject>principal angles</subject><subject>Similarity</subject><subject>Spatial data</subject><issn>0323-3847</issn><issn>1521-4036</issn><issn>1521-4036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0L9v3CAYxnEUtUquadeOEVKXLL6-8GJsj8nlR6_KqUNbdUQYcw0n2ziAU91_X6JLM2TphJA-PEJfQj4yWDIA_rl1w27JgSMAVnBEFqzkrBCA8g1ZAHIssBbVCXkX4w4AGhD8mJxgIypgyBZE3QY_T3Q9Jvs76OQeLb3aj3pwht5ok3ygG9_ZPtJfLt3Ti2nqncnMjzR5upn75Kbe0u9zu7Mm0cug3UhXfhzzzT26tH9P3m51H-2H5_OU_Ly5_rH6Utx9u12vLu4KwxuUhTCswhaMsS3yLciu1PVWtpaxuqvA6LLGrqmsqaBhxkhRdkJ20Fa1FtLqssNTcn7YnYJ_mG1ManDR2L7Xo_VzVMg4Kxuo6zrTT6_ozs9hzL_LCsvcUTLManlQJvgYg92qKbhBh71ioJ7Sq6f06iV9fnD2PDu3g-1e-L_WGYgD-ON6u__PnLpcb75yySX-Bcz3jwA</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Kim, Younghoon</creator><creator>Fisher, Zachary F.</creator><creator>Pipiras, Vladas</creator><general>Wiley - VCH Verlag GmbH &amp; Co. KGaA</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0007-0117-5530</orcidid></search><sort><creationdate>202412</creationdate><title>Group Integrative Dynamic Factor Models With Application to Multiple Subject Brain Connectivity</title><author>Kim, Younghoon ; Fisher, Zachary F. ; Pipiras, Vladas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2936-4c173b0cceb32f06d5a8f6be118d70ca583d97ec7091cc645d46d0b78a46ea5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Autism</topic><topic>Autism Spectrum Disorder - diagnostic imaging</topic><topic>Autism Spectrum Disorder - physiopathology</topic><topic>Biometry - methods</topic><topic>Brain - diagnostic imaging</topic><topic>dynamic factor model</topic><topic>Dynamic structural analysis</topic><topic>fMRI</topic><topic>Functional magnetic resonance imaging</topic><topic>Group dynamics</topic><topic>group‐level analysis</topic><topic>high‐dimensional time series</topic><topic>Humans</topic><topic>Magnetic Resonance Imaging</topic><topic>Models, Statistical</topic><topic>multiway analysis</topic><topic>Neural networks</topic><topic>principal angles</topic><topic>Similarity</topic><topic>Spatial data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Younghoon</creatorcontrib><creatorcontrib>Fisher, Zachary F.</creatorcontrib><creatorcontrib>Pipiras, Vladas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biometrical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Younghoon</au><au>Fisher, Zachary F.</au><au>Pipiras, Vladas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Group Integrative Dynamic Factor Models With Application to Multiple Subject Brain Connectivity</atitle><jtitle>Biometrical journal</jtitle><addtitle>Biom J</addtitle><date>2024-12</date><risdate>2024</risdate><volume>66</volume><issue>8</issue><spage>e202300370</spage><epage>n/a</epage><pages>e202300370-n/a</pages><issn>0323-3847</issn><issn>1521-4036</issn><eissn>1521-4036</eissn><abstract>ABSTRACT This work introduces a novel framework for dynamic factor model‐based group‐level analysis of multiple subjects time‐series data, called GRoup Integrative DYnamic factor (GRIDY) models. The framework identifies and characterizes intersubject similarities and differences between two predetermined groups by considering a combination of group spatial information and individual temporal dynamics. Furthermore, it enables the identification of intrasubject similarities and differences over time by employing different model configurations for each subject. Methodologically, the framework combines a novel principal angle‐based rank selection algorithm and a noniterative integrative analysis framework. Inspired by simultaneous component analysis, this approach also reconstructs identifiable latent factor series with flexible covariance structures. The performance of the GRIDY models is evaluated through simulations conducted under various scenarios. An application is also presented to compare resting‐state functional MRI data collected from multiple subjects in autism spectrum disorder and control groups.</abstract><cop>Germany</cop><pub>Wiley - VCH Verlag GmbH &amp; Co. KGaA</pub><pmid>39470131</pmid><doi>10.1002/bimj.202300370</doi><tpages>21</tpages><orcidid>https://orcid.org/0009-0007-0117-5530</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0323-3847
ispartof Biometrical journal, 2024-12, Vol.66 (8), p.e202300370-n/a
issn 0323-3847
1521-4036
1521-4036
language eng
recordid cdi_proquest_miscellaneous_3121590888
source MEDLINE; Wiley Journals
subjects Algorithms
Autism
Autism Spectrum Disorder - diagnostic imaging
Autism Spectrum Disorder - physiopathology
Biometry - methods
Brain - diagnostic imaging
dynamic factor model
Dynamic structural analysis
fMRI
Functional magnetic resonance imaging
Group dynamics
group‐level analysis
high‐dimensional time series
Humans
Magnetic Resonance Imaging
Models, Statistical
multiway analysis
Neural networks
principal angles
Similarity
Spatial data
title Group Integrative Dynamic Factor Models With Application to Multiple Subject Brain Connectivity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A50%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Group%20Integrative%20Dynamic%20Factor%20Models%20With%20Application%20to%20Multiple%20Subject%20Brain%20Connectivity&rft.jtitle=Biometrical%20journal&rft.au=Kim,%20Younghoon&rft.date=2024-12&rft.volume=66&rft.issue=8&rft.spage=e202300370&rft.epage=n/a&rft.pages=e202300370-n/a&rft.issn=0323-3847&rft.eissn=1521-4036&rft_id=info:doi/10.1002/bimj.202300370&rft_dat=%3Cproquest_cross%3E3135037613%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3135037613&rft_id=info:pmid/39470131&rfr_iscdi=true