Influence of hair presence on dermoscopic image analysis by AI in skin lesion diagnosis

The escalating rates of melanoma and non-melanoma skin cancers highlight the urgent need for enhanced diagnostic tools. This study evaluates the effect of hair presence in dermoscopic images on AI-driven skin lesion recognition, using 10,015 images from the HAM10000 collection. Images were categoriz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers in biology and medicine 2024-12, Vol.183, p.109335, Article 109335
Hauptverfasser: Wang, Zheng, Xue, Yang, Xi, Haonan, Tan, Xinyu, Lin, Kaibin, Wang, Chong, Zhang, Jianglin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 109335
container_title Computers in biology and medicine
container_volume 183
creator Wang, Zheng
Xue, Yang
Xi, Haonan
Tan, Xinyu
Lin, Kaibin
Wang, Chong
Zhang, Jianglin
description The escalating rates of melanoma and non-melanoma skin cancers highlight the urgent need for enhanced diagnostic tools. This study evaluates the effect of hair presence in dermoscopic images on AI-driven skin lesion recognition, using 10,015 images from the HAM10000 collection. Images were categorized based on the extent of hair occlusions to assess their impact on AI performance. Advanced metrics like Gradient-weighted Class Activation Mapping and novel infection metrics provided deeper insights into the model's focus and segmentation efficacy. The results revealed that the AI model achieved an impressive overall accuracy of 95.3 % and an Area Under the Curve (AUC) of 99.1 %, maintaining high performance across various lesion types. Performance varied with hair occlusion levels; it was optimal under few hair occlusions but dropped significantly when hair was abundant. For instance, Vascular Lesions saw a dramatic decrease in performance metrics from 0.515 to 0.115 under heavy hair occlusion, while Actinic Keratoses and Intraepithelial Carcinoma were least affected. Sparse hair occasionally improved accuracy, suggesting its potential utility in training robust models. The study underscores the complex impact of hair on AI diagnostics in dermatology, advocating for the development of advanced preprocessing techniques and hair-robust algorithms to enhance AI diagnostic capabilities. •Sparse hair can improve AI accuracy, dense hair hinders it.•Custom metrics (inf1, inf2, and inf) precisely evaluate AI accuracy and focus.•Grad-CAM reveals key areas affecting AI predictions, refining model focus.
doi_str_mv 10.1016/j.compbiomed.2024.109335
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3121590070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010482524014203</els_id><sourcerecordid>3121590070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1926-dbef3d2b3e5ddf1cda752e14d62959acedf01466de68338da4bb93c66b832e43</originalsourceid><addsrcrecordid>eNqFkE1v1DAQQC0EosvCX0CWuHDJMv6IEx9LVWClSlwqcbQce1K8JHGwG6T99zikFVIvvcxIM29mNI8QyuDAgKlPp4OL49yFOKI_cOCylLUQ9QuyY22jK6iFfEl2AAwq2fL6grzJ-QQAEgS8JhdCS9WIRu3Ij-PUDwtODmns6U8bEp0T5q0wUY9pjNnFOTgaRnuH1E52OOeQaXeml0caJpp_lTBgDisf7N0US_stedXbIeO7h7wnt1-ub6--VTffvx6vLm8qxzRXle-wF553Amvve-a8bWqOTHrFda2tQ98Dk0p5VK0Qrbey67RwSnWt4CjFnnzc1s4p_l4w35sxZIfDYCeMSzaCcVZrgAYK-uEJeopLKt_8o4okpYvCPWk3yqWYc8LezKk8ns6GgVndm5P5796s7s3mvoy-fziwdGvvcfBRdgE-bwAWIX8CJpNdWE37kNDdGx_D81f-Apg8mjg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3128256993</pqid></control><display><type>article</type><title>Influence of hair presence on dermoscopic image analysis by AI in skin lesion diagnosis</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Wang, Zheng ; Xue, Yang ; Xi, Haonan ; Tan, Xinyu ; Lin, Kaibin ; Wang, Chong ; Zhang, Jianglin</creator><creatorcontrib>Wang, Zheng ; Xue, Yang ; Xi, Haonan ; Tan, Xinyu ; Lin, Kaibin ; Wang, Chong ; Zhang, Jianglin</creatorcontrib><description>The escalating rates of melanoma and non-melanoma skin cancers highlight the urgent need for enhanced diagnostic tools. This study evaluates the effect of hair presence in dermoscopic images on AI-driven skin lesion recognition, using 10,015 images from the HAM10000 collection. Images were categorized based on the extent of hair occlusions to assess their impact on AI performance. Advanced metrics like Gradient-weighted Class Activation Mapping and novel infection metrics provided deeper insights into the model's focus and segmentation efficacy. The results revealed that the AI model achieved an impressive overall accuracy of 95.3 % and an Area Under the Curve (AUC) of 99.1 %, maintaining high performance across various lesion types. Performance varied with hair occlusion levels; it was optimal under few hair occlusions but dropped significantly when hair was abundant. For instance, Vascular Lesions saw a dramatic decrease in performance metrics from 0.515 to 0.115 under heavy hair occlusion, while Actinic Keratoses and Intraepithelial Carcinoma were least affected. Sparse hair occasionally improved accuracy, suggesting its potential utility in training robust models. The study underscores the complex impact of hair on AI diagnostics in dermatology, advocating for the development of advanced preprocessing techniques and hair-robust algorithms to enhance AI diagnostic capabilities. •Sparse hair can improve AI accuracy, dense hair hinders it.•Custom metrics (inf1, inf2, and inf) precisely evaluate AI accuracy and focus.•Grad-CAM reveals key areas affecting AI predictions, refining model focus.</description><identifier>ISSN: 0010-4825</identifier><identifier>ISSN: 1879-0534</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2024.109335</identifier><identifier>PMID: 39467376</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Accuracy ; Algorithms ; Artificial intelligence ; Cancer ; Datasets ; Dermatology ; Dermoscopic image ; Dermoscopy - methods ; Gradient-weighted class activation mapping ; Hair ; Hair - diagnostic imaging ; Humans ; Image analysis ; Image enhancement ; Image Interpretation, Computer-Assisted - methods ; Image processing ; Image segmentation ; Lesions ; Medical imaging ; Melanoma ; Melanoma - diagnostic imaging ; Melanoma - pathology ; Occlusion ; Performance measurement ; Robustness ; Skin ; Skin - diagnostic imaging ; Skin - pathology ; Skin cancer ; Skin diseases ; Skin lesion ; Skin lesions ; Skin Neoplasms - diagnostic imaging ; Skin Neoplasms - pathology</subject><ispartof>Computers in biology and medicine, 2024-12, Vol.183, p.109335, Article 109335</ispartof><rights>2024 Elsevier Ltd</rights><rights>Copyright © 2024 Elsevier Ltd. All rights reserved.</rights><rights>2024. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1926-dbef3d2b3e5ddf1cda752e14d62959acedf01466de68338da4bb93c66b832e43</cites><orcidid>0000-0002-1343-5199 ; 0000-0003-0434-1729</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compbiomed.2024.109335$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39467376$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Zheng</creatorcontrib><creatorcontrib>Xue, Yang</creatorcontrib><creatorcontrib>Xi, Haonan</creatorcontrib><creatorcontrib>Tan, Xinyu</creatorcontrib><creatorcontrib>Lin, Kaibin</creatorcontrib><creatorcontrib>Wang, Chong</creatorcontrib><creatorcontrib>Zhang, Jianglin</creatorcontrib><title>Influence of hair presence on dermoscopic image analysis by AI in skin lesion diagnosis</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>The escalating rates of melanoma and non-melanoma skin cancers highlight the urgent need for enhanced diagnostic tools. This study evaluates the effect of hair presence in dermoscopic images on AI-driven skin lesion recognition, using 10,015 images from the HAM10000 collection. Images were categorized based on the extent of hair occlusions to assess their impact on AI performance. Advanced metrics like Gradient-weighted Class Activation Mapping and novel infection metrics provided deeper insights into the model's focus and segmentation efficacy. The results revealed that the AI model achieved an impressive overall accuracy of 95.3 % and an Area Under the Curve (AUC) of 99.1 %, maintaining high performance across various lesion types. Performance varied with hair occlusion levels; it was optimal under few hair occlusions but dropped significantly when hair was abundant. For instance, Vascular Lesions saw a dramatic decrease in performance metrics from 0.515 to 0.115 under heavy hair occlusion, while Actinic Keratoses and Intraepithelial Carcinoma were least affected. Sparse hair occasionally improved accuracy, suggesting its potential utility in training robust models. The study underscores the complex impact of hair on AI diagnostics in dermatology, advocating for the development of advanced preprocessing techniques and hair-robust algorithms to enhance AI diagnostic capabilities. •Sparse hair can improve AI accuracy, dense hair hinders it.•Custom metrics (inf1, inf2, and inf) precisely evaluate AI accuracy and focus.•Grad-CAM reveals key areas affecting AI predictions, refining model focus.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Cancer</subject><subject>Datasets</subject><subject>Dermatology</subject><subject>Dermoscopic image</subject><subject>Dermoscopy - methods</subject><subject>Gradient-weighted class activation mapping</subject><subject>Hair</subject><subject>Hair - diagnostic imaging</subject><subject>Humans</subject><subject>Image analysis</subject><subject>Image enhancement</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Lesions</subject><subject>Medical imaging</subject><subject>Melanoma</subject><subject>Melanoma - diagnostic imaging</subject><subject>Melanoma - pathology</subject><subject>Occlusion</subject><subject>Performance measurement</subject><subject>Robustness</subject><subject>Skin</subject><subject>Skin - diagnostic imaging</subject><subject>Skin - pathology</subject><subject>Skin cancer</subject><subject>Skin diseases</subject><subject>Skin lesion</subject><subject>Skin lesions</subject><subject>Skin Neoplasms - diagnostic imaging</subject><subject>Skin Neoplasms - pathology</subject><issn>0010-4825</issn><issn>1879-0534</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1v1DAQQC0EosvCX0CWuHDJMv6IEx9LVWClSlwqcbQce1K8JHGwG6T99zikFVIvvcxIM29mNI8QyuDAgKlPp4OL49yFOKI_cOCylLUQ9QuyY22jK6iFfEl2AAwq2fL6grzJ-QQAEgS8JhdCS9WIRu3Ij-PUDwtODmns6U8bEp0T5q0wUY9pjNnFOTgaRnuH1E52OOeQaXeml0caJpp_lTBgDisf7N0US_stedXbIeO7h7wnt1-ub6--VTffvx6vLm8qxzRXle-wF553Amvve-a8bWqOTHrFda2tQ98Dk0p5VK0Qrbey67RwSnWt4CjFnnzc1s4p_l4w35sxZIfDYCeMSzaCcVZrgAYK-uEJeopLKt_8o4okpYvCPWk3yqWYc8LezKk8ns6GgVndm5P5796s7s3mvoy-fziwdGvvcfBRdgE-bwAWIX8CJpNdWE37kNDdGx_D81f-Apg8mjg</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Wang, Zheng</creator><creator>Xue, Yang</creator><creator>Xi, Haonan</creator><creator>Tan, Xinyu</creator><creator>Lin, Kaibin</creator><creator>Wang, Chong</creator><creator>Zhang, Jianglin</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1343-5199</orcidid><orcidid>https://orcid.org/0000-0003-0434-1729</orcidid></search><sort><creationdate>202412</creationdate><title>Influence of hair presence on dermoscopic image analysis by AI in skin lesion diagnosis</title><author>Wang, Zheng ; Xue, Yang ; Xi, Haonan ; Tan, Xinyu ; Lin, Kaibin ; Wang, Chong ; Zhang, Jianglin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1926-dbef3d2b3e5ddf1cda752e14d62959acedf01466de68338da4bb93c66b832e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Cancer</topic><topic>Datasets</topic><topic>Dermatology</topic><topic>Dermoscopic image</topic><topic>Dermoscopy - methods</topic><topic>Gradient-weighted class activation mapping</topic><topic>Hair</topic><topic>Hair - diagnostic imaging</topic><topic>Humans</topic><topic>Image analysis</topic><topic>Image enhancement</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Lesions</topic><topic>Medical imaging</topic><topic>Melanoma</topic><topic>Melanoma - diagnostic imaging</topic><topic>Melanoma - pathology</topic><topic>Occlusion</topic><topic>Performance measurement</topic><topic>Robustness</topic><topic>Skin</topic><topic>Skin - diagnostic imaging</topic><topic>Skin - pathology</topic><topic>Skin cancer</topic><topic>Skin diseases</topic><topic>Skin lesion</topic><topic>Skin lesions</topic><topic>Skin Neoplasms - diagnostic imaging</topic><topic>Skin Neoplasms - pathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zheng</creatorcontrib><creatorcontrib>Xue, Yang</creatorcontrib><creatorcontrib>Xi, Haonan</creatorcontrib><creatorcontrib>Tan, Xinyu</creatorcontrib><creatorcontrib>Lin, Kaibin</creatorcontrib><creatorcontrib>Wang, Chong</creatorcontrib><creatorcontrib>Zhang, Jianglin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zheng</au><au>Xue, Yang</au><au>Xi, Haonan</au><au>Tan, Xinyu</au><au>Lin, Kaibin</au><au>Wang, Chong</au><au>Zhang, Jianglin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of hair presence on dermoscopic image analysis by AI in skin lesion diagnosis</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2024-12</date><risdate>2024</risdate><volume>183</volume><spage>109335</spage><pages>109335-</pages><artnum>109335</artnum><issn>0010-4825</issn><issn>1879-0534</issn><eissn>1879-0534</eissn><abstract>The escalating rates of melanoma and non-melanoma skin cancers highlight the urgent need for enhanced diagnostic tools. This study evaluates the effect of hair presence in dermoscopic images on AI-driven skin lesion recognition, using 10,015 images from the HAM10000 collection. Images were categorized based on the extent of hair occlusions to assess their impact on AI performance. Advanced metrics like Gradient-weighted Class Activation Mapping and novel infection metrics provided deeper insights into the model's focus and segmentation efficacy. The results revealed that the AI model achieved an impressive overall accuracy of 95.3 % and an Area Under the Curve (AUC) of 99.1 %, maintaining high performance across various lesion types. Performance varied with hair occlusion levels; it was optimal under few hair occlusions but dropped significantly when hair was abundant. For instance, Vascular Lesions saw a dramatic decrease in performance metrics from 0.515 to 0.115 under heavy hair occlusion, while Actinic Keratoses and Intraepithelial Carcinoma were least affected. Sparse hair occasionally improved accuracy, suggesting its potential utility in training robust models. The study underscores the complex impact of hair on AI diagnostics in dermatology, advocating for the development of advanced preprocessing techniques and hair-robust algorithms to enhance AI diagnostic capabilities. •Sparse hair can improve AI accuracy, dense hair hinders it.•Custom metrics (inf1, inf2, and inf) precisely evaluate AI accuracy and focus.•Grad-CAM reveals key areas affecting AI predictions, refining model focus.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>39467376</pmid><doi>10.1016/j.compbiomed.2024.109335</doi><orcidid>https://orcid.org/0000-0002-1343-5199</orcidid><orcidid>https://orcid.org/0000-0003-0434-1729</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0010-4825
ispartof Computers in biology and medicine, 2024-12, Vol.183, p.109335, Article 109335
issn 0010-4825
1879-0534
1879-0534
language eng
recordid cdi_proquest_miscellaneous_3121590070
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Accuracy
Algorithms
Artificial intelligence
Cancer
Datasets
Dermatology
Dermoscopic image
Dermoscopy - methods
Gradient-weighted class activation mapping
Hair
Hair - diagnostic imaging
Humans
Image analysis
Image enhancement
Image Interpretation, Computer-Assisted - methods
Image processing
Image segmentation
Lesions
Medical imaging
Melanoma
Melanoma - diagnostic imaging
Melanoma - pathology
Occlusion
Performance measurement
Robustness
Skin
Skin - diagnostic imaging
Skin - pathology
Skin cancer
Skin diseases
Skin lesion
Skin lesions
Skin Neoplasms - diagnostic imaging
Skin Neoplasms - pathology
title Influence of hair presence on dermoscopic image analysis by AI in skin lesion diagnosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A55%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20hair%20presence%20on%20dermoscopic%20image%20analysis%20by%20AI%20in%20skin%20lesion%20diagnosis&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Wang,%20Zheng&rft.date=2024-12&rft.volume=183&rft.spage=109335&rft.pages=109335-&rft.artnum=109335&rft.issn=0010-4825&rft.eissn=1879-0534&rft_id=info:doi/10.1016/j.compbiomed.2024.109335&rft_dat=%3Cproquest_cross%3E3121590070%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3128256993&rft_id=info:pmid/39467376&rft_els_id=S0010482524014203&rfr_iscdi=true