Influence of hair presence on dermoscopic image analysis by AI in skin lesion diagnosis
The escalating rates of melanoma and non-melanoma skin cancers highlight the urgent need for enhanced diagnostic tools. This study evaluates the effect of hair presence in dermoscopic images on AI-driven skin lesion recognition, using 10,015 images from the HAM10000 collection. Images were categoriz...
Gespeichert in:
Veröffentlicht in: | Computers in biology and medicine 2024-12, Vol.183, p.109335, Article 109335 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 109335 |
container_title | Computers in biology and medicine |
container_volume | 183 |
creator | Wang, Zheng Xue, Yang Xi, Haonan Tan, Xinyu Lin, Kaibin Wang, Chong Zhang, Jianglin |
description | The escalating rates of melanoma and non-melanoma skin cancers highlight the urgent need for enhanced diagnostic tools. This study evaluates the effect of hair presence in dermoscopic images on AI-driven skin lesion recognition, using 10,015 images from the HAM10000 collection. Images were categorized based on the extent of hair occlusions to assess their impact on AI performance. Advanced metrics like Gradient-weighted Class Activation Mapping and novel infection metrics provided deeper insights into the model's focus and segmentation efficacy. The results revealed that the AI model achieved an impressive overall accuracy of 95.3 % and an Area Under the Curve (AUC) of 99.1 %, maintaining high performance across various lesion types. Performance varied with hair occlusion levels; it was optimal under few hair occlusions but dropped significantly when hair was abundant. For instance, Vascular Lesions saw a dramatic decrease in performance metrics from 0.515 to 0.115 under heavy hair occlusion, while Actinic Keratoses and Intraepithelial Carcinoma were least affected. Sparse hair occasionally improved accuracy, suggesting its potential utility in training robust models. The study underscores the complex impact of hair on AI diagnostics in dermatology, advocating for the development of advanced preprocessing techniques and hair-robust algorithms to enhance AI diagnostic capabilities.
•Sparse hair can improve AI accuracy, dense hair hinders it.•Custom metrics (inf1, inf2, and inf) precisely evaluate AI accuracy and focus.•Grad-CAM reveals key areas affecting AI predictions, refining model focus. |
doi_str_mv | 10.1016/j.compbiomed.2024.109335 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3121590070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010482524014203</els_id><sourcerecordid>3121590070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1926-dbef3d2b3e5ddf1cda752e14d62959acedf01466de68338da4bb93c66b832e43</originalsourceid><addsrcrecordid>eNqFkE1v1DAQQC0EosvCX0CWuHDJMv6IEx9LVWClSlwqcbQce1K8JHGwG6T99zikFVIvvcxIM29mNI8QyuDAgKlPp4OL49yFOKI_cOCylLUQ9QuyY22jK6iFfEl2AAwq2fL6grzJ-QQAEgS8JhdCS9WIRu3Ij-PUDwtODmns6U8bEp0T5q0wUY9pjNnFOTgaRnuH1E52OOeQaXeml0caJpp_lTBgDisf7N0US_stedXbIeO7h7wnt1-ub6--VTffvx6vLm8qxzRXle-wF553Amvve-a8bWqOTHrFda2tQ98Dk0p5VK0Qrbey67RwSnWt4CjFnnzc1s4p_l4w35sxZIfDYCeMSzaCcVZrgAYK-uEJeopLKt_8o4okpYvCPWk3yqWYc8LezKk8ns6GgVndm5P5796s7s3mvoy-fziwdGvvcfBRdgE-bwAWIX8CJpNdWE37kNDdGx_D81f-Apg8mjg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3128256993</pqid></control><display><type>article</type><title>Influence of hair presence on dermoscopic image analysis by AI in skin lesion diagnosis</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Wang, Zheng ; Xue, Yang ; Xi, Haonan ; Tan, Xinyu ; Lin, Kaibin ; Wang, Chong ; Zhang, Jianglin</creator><creatorcontrib>Wang, Zheng ; Xue, Yang ; Xi, Haonan ; Tan, Xinyu ; Lin, Kaibin ; Wang, Chong ; Zhang, Jianglin</creatorcontrib><description>The escalating rates of melanoma and non-melanoma skin cancers highlight the urgent need for enhanced diagnostic tools. This study evaluates the effect of hair presence in dermoscopic images on AI-driven skin lesion recognition, using 10,015 images from the HAM10000 collection. Images were categorized based on the extent of hair occlusions to assess their impact on AI performance. Advanced metrics like Gradient-weighted Class Activation Mapping and novel infection metrics provided deeper insights into the model's focus and segmentation efficacy. The results revealed that the AI model achieved an impressive overall accuracy of 95.3 % and an Area Under the Curve (AUC) of 99.1 %, maintaining high performance across various lesion types. Performance varied with hair occlusion levels; it was optimal under few hair occlusions but dropped significantly when hair was abundant. For instance, Vascular Lesions saw a dramatic decrease in performance metrics from 0.515 to 0.115 under heavy hair occlusion, while Actinic Keratoses and Intraepithelial Carcinoma were least affected. Sparse hair occasionally improved accuracy, suggesting its potential utility in training robust models. The study underscores the complex impact of hair on AI diagnostics in dermatology, advocating for the development of advanced preprocessing techniques and hair-robust algorithms to enhance AI diagnostic capabilities.
•Sparse hair can improve AI accuracy, dense hair hinders it.•Custom metrics (inf1, inf2, and inf) precisely evaluate AI accuracy and focus.•Grad-CAM reveals key areas affecting AI predictions, refining model focus.</description><identifier>ISSN: 0010-4825</identifier><identifier>ISSN: 1879-0534</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2024.109335</identifier><identifier>PMID: 39467376</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Accuracy ; Algorithms ; Artificial intelligence ; Cancer ; Datasets ; Dermatology ; Dermoscopic image ; Dermoscopy - methods ; Gradient-weighted class activation mapping ; Hair ; Hair - diagnostic imaging ; Humans ; Image analysis ; Image enhancement ; Image Interpretation, Computer-Assisted - methods ; Image processing ; Image segmentation ; Lesions ; Medical imaging ; Melanoma ; Melanoma - diagnostic imaging ; Melanoma - pathology ; Occlusion ; Performance measurement ; Robustness ; Skin ; Skin - diagnostic imaging ; Skin - pathology ; Skin cancer ; Skin diseases ; Skin lesion ; Skin lesions ; Skin Neoplasms - diagnostic imaging ; Skin Neoplasms - pathology</subject><ispartof>Computers in biology and medicine, 2024-12, Vol.183, p.109335, Article 109335</ispartof><rights>2024 Elsevier Ltd</rights><rights>Copyright © 2024 Elsevier Ltd. All rights reserved.</rights><rights>2024. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1926-dbef3d2b3e5ddf1cda752e14d62959acedf01466de68338da4bb93c66b832e43</cites><orcidid>0000-0002-1343-5199 ; 0000-0003-0434-1729</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compbiomed.2024.109335$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39467376$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Zheng</creatorcontrib><creatorcontrib>Xue, Yang</creatorcontrib><creatorcontrib>Xi, Haonan</creatorcontrib><creatorcontrib>Tan, Xinyu</creatorcontrib><creatorcontrib>Lin, Kaibin</creatorcontrib><creatorcontrib>Wang, Chong</creatorcontrib><creatorcontrib>Zhang, Jianglin</creatorcontrib><title>Influence of hair presence on dermoscopic image analysis by AI in skin lesion diagnosis</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>The escalating rates of melanoma and non-melanoma skin cancers highlight the urgent need for enhanced diagnostic tools. This study evaluates the effect of hair presence in dermoscopic images on AI-driven skin lesion recognition, using 10,015 images from the HAM10000 collection. Images were categorized based on the extent of hair occlusions to assess their impact on AI performance. Advanced metrics like Gradient-weighted Class Activation Mapping and novel infection metrics provided deeper insights into the model's focus and segmentation efficacy. The results revealed that the AI model achieved an impressive overall accuracy of 95.3 % and an Area Under the Curve (AUC) of 99.1 %, maintaining high performance across various lesion types. Performance varied with hair occlusion levels; it was optimal under few hair occlusions but dropped significantly when hair was abundant. For instance, Vascular Lesions saw a dramatic decrease in performance metrics from 0.515 to 0.115 under heavy hair occlusion, while Actinic Keratoses and Intraepithelial Carcinoma were least affected. Sparse hair occasionally improved accuracy, suggesting its potential utility in training robust models. The study underscores the complex impact of hair on AI diagnostics in dermatology, advocating for the development of advanced preprocessing techniques and hair-robust algorithms to enhance AI diagnostic capabilities.
•Sparse hair can improve AI accuracy, dense hair hinders it.•Custom metrics (inf1, inf2, and inf) precisely evaluate AI accuracy and focus.•Grad-CAM reveals key areas affecting AI predictions, refining model focus.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Cancer</subject><subject>Datasets</subject><subject>Dermatology</subject><subject>Dermoscopic image</subject><subject>Dermoscopy - methods</subject><subject>Gradient-weighted class activation mapping</subject><subject>Hair</subject><subject>Hair - diagnostic imaging</subject><subject>Humans</subject><subject>Image analysis</subject><subject>Image enhancement</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Lesions</subject><subject>Medical imaging</subject><subject>Melanoma</subject><subject>Melanoma - diagnostic imaging</subject><subject>Melanoma - pathology</subject><subject>Occlusion</subject><subject>Performance measurement</subject><subject>Robustness</subject><subject>Skin</subject><subject>Skin - diagnostic imaging</subject><subject>Skin - pathology</subject><subject>Skin cancer</subject><subject>Skin diseases</subject><subject>Skin lesion</subject><subject>Skin lesions</subject><subject>Skin Neoplasms - diagnostic imaging</subject><subject>Skin Neoplasms - pathology</subject><issn>0010-4825</issn><issn>1879-0534</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1v1DAQQC0EosvCX0CWuHDJMv6IEx9LVWClSlwqcbQce1K8JHGwG6T99zikFVIvvcxIM29mNI8QyuDAgKlPp4OL49yFOKI_cOCylLUQ9QuyY22jK6iFfEl2AAwq2fL6grzJ-QQAEgS8JhdCS9WIRu3Ij-PUDwtODmns6U8bEp0T5q0wUY9pjNnFOTgaRnuH1E52OOeQaXeml0caJpp_lTBgDisf7N0US_stedXbIeO7h7wnt1-ub6--VTffvx6vLm8qxzRXle-wF553Amvve-a8bWqOTHrFda2tQ98Dk0p5VK0Qrbey67RwSnWt4CjFnnzc1s4p_l4w35sxZIfDYCeMSzaCcVZrgAYK-uEJeopLKt_8o4okpYvCPWk3yqWYc8LezKk8ns6GgVndm5P5796s7s3mvoy-fziwdGvvcfBRdgE-bwAWIX8CJpNdWE37kNDdGx_D81f-Apg8mjg</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Wang, Zheng</creator><creator>Xue, Yang</creator><creator>Xi, Haonan</creator><creator>Tan, Xinyu</creator><creator>Lin, Kaibin</creator><creator>Wang, Chong</creator><creator>Zhang, Jianglin</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1343-5199</orcidid><orcidid>https://orcid.org/0000-0003-0434-1729</orcidid></search><sort><creationdate>202412</creationdate><title>Influence of hair presence on dermoscopic image analysis by AI in skin lesion diagnosis</title><author>Wang, Zheng ; Xue, Yang ; Xi, Haonan ; Tan, Xinyu ; Lin, Kaibin ; Wang, Chong ; Zhang, Jianglin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1926-dbef3d2b3e5ddf1cda752e14d62959acedf01466de68338da4bb93c66b832e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Cancer</topic><topic>Datasets</topic><topic>Dermatology</topic><topic>Dermoscopic image</topic><topic>Dermoscopy - methods</topic><topic>Gradient-weighted class activation mapping</topic><topic>Hair</topic><topic>Hair - diagnostic imaging</topic><topic>Humans</topic><topic>Image analysis</topic><topic>Image enhancement</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Lesions</topic><topic>Medical imaging</topic><topic>Melanoma</topic><topic>Melanoma - diagnostic imaging</topic><topic>Melanoma - pathology</topic><topic>Occlusion</topic><topic>Performance measurement</topic><topic>Robustness</topic><topic>Skin</topic><topic>Skin - diagnostic imaging</topic><topic>Skin - pathology</topic><topic>Skin cancer</topic><topic>Skin diseases</topic><topic>Skin lesion</topic><topic>Skin lesions</topic><topic>Skin Neoplasms - diagnostic imaging</topic><topic>Skin Neoplasms - pathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zheng</creatorcontrib><creatorcontrib>Xue, Yang</creatorcontrib><creatorcontrib>Xi, Haonan</creatorcontrib><creatorcontrib>Tan, Xinyu</creatorcontrib><creatorcontrib>Lin, Kaibin</creatorcontrib><creatorcontrib>Wang, Chong</creatorcontrib><creatorcontrib>Zhang, Jianglin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zheng</au><au>Xue, Yang</au><au>Xi, Haonan</au><au>Tan, Xinyu</au><au>Lin, Kaibin</au><au>Wang, Chong</au><au>Zhang, Jianglin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of hair presence on dermoscopic image analysis by AI in skin lesion diagnosis</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2024-12</date><risdate>2024</risdate><volume>183</volume><spage>109335</spage><pages>109335-</pages><artnum>109335</artnum><issn>0010-4825</issn><issn>1879-0534</issn><eissn>1879-0534</eissn><abstract>The escalating rates of melanoma and non-melanoma skin cancers highlight the urgent need for enhanced diagnostic tools. This study evaluates the effect of hair presence in dermoscopic images on AI-driven skin lesion recognition, using 10,015 images from the HAM10000 collection. Images were categorized based on the extent of hair occlusions to assess their impact on AI performance. Advanced metrics like Gradient-weighted Class Activation Mapping and novel infection metrics provided deeper insights into the model's focus and segmentation efficacy. The results revealed that the AI model achieved an impressive overall accuracy of 95.3 % and an Area Under the Curve (AUC) of 99.1 %, maintaining high performance across various lesion types. Performance varied with hair occlusion levels; it was optimal under few hair occlusions but dropped significantly when hair was abundant. For instance, Vascular Lesions saw a dramatic decrease in performance metrics from 0.515 to 0.115 under heavy hair occlusion, while Actinic Keratoses and Intraepithelial Carcinoma were least affected. Sparse hair occasionally improved accuracy, suggesting its potential utility in training robust models. The study underscores the complex impact of hair on AI diagnostics in dermatology, advocating for the development of advanced preprocessing techniques and hair-robust algorithms to enhance AI diagnostic capabilities.
•Sparse hair can improve AI accuracy, dense hair hinders it.•Custom metrics (inf1, inf2, and inf) precisely evaluate AI accuracy and focus.•Grad-CAM reveals key areas affecting AI predictions, refining model focus.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>39467376</pmid><doi>10.1016/j.compbiomed.2024.109335</doi><orcidid>https://orcid.org/0000-0002-1343-5199</orcidid><orcidid>https://orcid.org/0000-0003-0434-1729</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-4825 |
ispartof | Computers in biology and medicine, 2024-12, Vol.183, p.109335, Article 109335 |
issn | 0010-4825 1879-0534 1879-0534 |
language | eng |
recordid | cdi_proquest_miscellaneous_3121590070 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Accuracy Algorithms Artificial intelligence Cancer Datasets Dermatology Dermoscopic image Dermoscopy - methods Gradient-weighted class activation mapping Hair Hair - diagnostic imaging Humans Image analysis Image enhancement Image Interpretation, Computer-Assisted - methods Image processing Image segmentation Lesions Medical imaging Melanoma Melanoma - diagnostic imaging Melanoma - pathology Occlusion Performance measurement Robustness Skin Skin - diagnostic imaging Skin - pathology Skin cancer Skin diseases Skin lesion Skin lesions Skin Neoplasms - diagnostic imaging Skin Neoplasms - pathology |
title | Influence of hair presence on dermoscopic image analysis by AI in skin lesion diagnosis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A55%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20hair%20presence%20on%20dermoscopic%20image%20analysis%20by%20AI%20in%20skin%20lesion%20diagnosis&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Wang,%20Zheng&rft.date=2024-12&rft.volume=183&rft.spage=109335&rft.pages=109335-&rft.artnum=109335&rft.issn=0010-4825&rft.eissn=1879-0534&rft_id=info:doi/10.1016/j.compbiomed.2024.109335&rft_dat=%3Cproquest_cross%3E3121590070%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3128256993&rft_id=info:pmid/39467376&rft_els_id=S0010482524014203&rfr_iscdi=true |