Nickel-Doped Facet-Selective Copper Nanowires for Activating CO-to-Ethanol Electrosynthesis

Ethanol isa promising energy vector for closing the anthropogenic carbon cycle through reversible electrochemical redox. Currently, ethanol electrosynthesissuffers from low product selectivity due to the competitive advantage of ethylene in CO /CO electroreduction. Here, a facet-selective metal-dopi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2024-10, p.e2413111
Hauptverfasser: Zhang, Xing, Ling, Chongyi, Ren, Siyun, Xi, Hanchen, Ji, Liyao, Wang, Jinlan, Zhu, Jia
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page e2413111
container_title Advanced materials (Weinheim)
container_volume
creator Zhang, Xing
Ling, Chongyi
Ren, Siyun
Xi, Hanchen
Ji, Liyao
Wang, Jinlan
Zhu, Jia
description Ethanol isa promising energy vector for closing the anthropogenic carbon cycle through reversible electrochemical redox. Currently, ethanol electrosynthesissuffers from low product selectivity due to the competitive advantage of ethylene in CO /CO electroreduction. Here, a facet-selective metal-doping strategy is reported, tuning the reaction kinetics of CO reduction paths and thus enhancing the ethanol selectivity. The theoretical calculations reveal that nickel (Ni)doped Cu(100) surface facilitates water dissociation to form adsorbed hydrogen, which promotesselective electrochemical hydrogenation of a key C intermediate ( CHCOH) toward ethanol path over ethylene path. Experimentally, a solution-phase synthesis of a Ni-doped {100}-dominated Copper nanowires (Cu NWs) catalyst is reported, enabling an ethanol Faradaic efficiency of 56% and a selectivity ratio of ethanol to ethylene of 2.7, which are ≈4 and 15 times larger than those of undoped Cu NWs, respectively. The operando spectroscopic characterizations confirm that Ni-doping in Cu NWs can alter the interfacial water activity and thus regulate the C product selectivity. With further electrode engineering, a membrane electrode assembly electrolyzer using Ni-doped Cu NWs catalysts demonstrates an ethanol Faradaic efficiency over 50% at 300 mA cm with a full cell voltage of ≈2.7 V and operates stably for over 300 h.
doi_str_mv 10.1002/adma.202413111
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3121280637</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3121280637</sourcerecordid><originalsourceid>FETCH-LOGICAL-c220t-e46ca30ba0ed3adbef01bdbe17a2dd9e9b9d43d3252a3ae4a3bff2c3b2186a633</originalsourceid><addsrcrecordid>eNo9kDFPwzAQRi0EoqWwMqKMLC5nO3HrsSotIFXtAEwMkWNfaCCJQ-yC-u9J1MJ0w73v090j5JrBmAHwO20rPebAYyYYYydkyBLOaAwqOSVDUCKhSsbTAbnw_gMAlAR5TgZCxVIwrobkbV2YTyzpvWvQRkttMNBnLNGE4hujuWsabKO1rt1P0aKPctdGs36nQ1G_R_MNDY4uwrYDymjRx1rn93XYoi_8JTnLdenx6jhH5HW5eJk_0tXm4Wk-W1HDOQSKsTRaQKYBrdA2wxxY1g020dxahSpTNhZW8IRroTHWIstzbkTG2VRqKcSI3B56m9Z97dCHtCq8wbLUNbqdT7tPGZ-CFJMOHR9Q093pW8zTpi0q3e5TBmkvNO2Fpv9Cu8DNsXuXVWj_8T-D4hcPtnLr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3121280637</pqid></control><display><type>article</type><title>Nickel-Doped Facet-Selective Copper Nanowires for Activating CO-to-Ethanol Electrosynthesis</title><source>Access via Wiley Online Library</source><creator>Zhang, Xing ; Ling, Chongyi ; Ren, Siyun ; Xi, Hanchen ; Ji, Liyao ; Wang, Jinlan ; Zhu, Jia</creator><creatorcontrib>Zhang, Xing ; Ling, Chongyi ; Ren, Siyun ; Xi, Hanchen ; Ji, Liyao ; Wang, Jinlan ; Zhu, Jia</creatorcontrib><description>Ethanol isa promising energy vector for closing the anthropogenic carbon cycle through reversible electrochemical redox. Currently, ethanol electrosynthesissuffers from low product selectivity due to the competitive advantage of ethylene in CO /CO electroreduction. Here, a facet-selective metal-doping strategy is reported, tuning the reaction kinetics of CO reduction paths and thus enhancing the ethanol selectivity. The theoretical calculations reveal that nickel (Ni)doped Cu(100) surface facilitates water dissociation to form adsorbed hydrogen, which promotesselective electrochemical hydrogenation of a key C intermediate ( CHCOH) toward ethanol path over ethylene path. Experimentally, a solution-phase synthesis of a Ni-doped {100}-dominated Copper nanowires (Cu NWs) catalyst is reported, enabling an ethanol Faradaic efficiency of 56% and a selectivity ratio of ethanol to ethylene of 2.7, which are ≈4 and 15 times larger than those of undoped Cu NWs, respectively. The operando spectroscopic characterizations confirm that Ni-doping in Cu NWs can alter the interfacial water activity and thus regulate the C product selectivity. With further electrode engineering, a membrane electrode assembly electrolyzer using Ni-doped Cu NWs catalysts demonstrates an ethanol Faradaic efficiency over 50% at 300 mA cm with a full cell voltage of ≈2.7 V and operates stably for over 300 h.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202413111</identifier><identifier>PMID: 39463129</identifier><language>eng</language><publisher>Germany</publisher><ispartof>Advanced materials (Weinheim), 2024-10, p.e2413111</ispartof><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c220t-e46ca30ba0ed3adbef01bdbe17a2dd9e9b9d43d3252a3ae4a3bff2c3b2186a633</cites><orcidid>0000-0002-2871-4369</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39463129$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Xing</creatorcontrib><creatorcontrib>Ling, Chongyi</creatorcontrib><creatorcontrib>Ren, Siyun</creatorcontrib><creatorcontrib>Xi, Hanchen</creatorcontrib><creatorcontrib>Ji, Liyao</creatorcontrib><creatorcontrib>Wang, Jinlan</creatorcontrib><creatorcontrib>Zhu, Jia</creatorcontrib><title>Nickel-Doped Facet-Selective Copper Nanowires for Activating CO-to-Ethanol Electrosynthesis</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Ethanol isa promising energy vector for closing the anthropogenic carbon cycle through reversible electrochemical redox. Currently, ethanol electrosynthesissuffers from low product selectivity due to the competitive advantage of ethylene in CO /CO electroreduction. Here, a facet-selective metal-doping strategy is reported, tuning the reaction kinetics of CO reduction paths and thus enhancing the ethanol selectivity. The theoretical calculations reveal that nickel (Ni)doped Cu(100) surface facilitates water dissociation to form adsorbed hydrogen, which promotesselective electrochemical hydrogenation of a key C intermediate ( CHCOH) toward ethanol path over ethylene path. Experimentally, a solution-phase synthesis of a Ni-doped {100}-dominated Copper nanowires (Cu NWs) catalyst is reported, enabling an ethanol Faradaic efficiency of 56% and a selectivity ratio of ethanol to ethylene of 2.7, which are ≈4 and 15 times larger than those of undoped Cu NWs, respectively. The operando spectroscopic characterizations confirm that Ni-doping in Cu NWs can alter the interfacial water activity and thus regulate the C product selectivity. With further electrode engineering, a membrane electrode assembly electrolyzer using Ni-doped Cu NWs catalysts demonstrates an ethanol Faradaic efficiency over 50% at 300 mA cm with a full cell voltage of ≈2.7 V and operates stably for over 300 h.</description><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kDFPwzAQRi0EoqWwMqKMLC5nO3HrsSotIFXtAEwMkWNfaCCJQ-yC-u9J1MJ0w73v090j5JrBmAHwO20rPebAYyYYYydkyBLOaAwqOSVDUCKhSsbTAbnw_gMAlAR5TgZCxVIwrobkbV2YTyzpvWvQRkttMNBnLNGE4hujuWsabKO1rt1P0aKPctdGs36nQ1G_R_MNDY4uwrYDymjRx1rn93XYoi_8JTnLdenx6jhH5HW5eJk_0tXm4Wk-W1HDOQSKsTRaQKYBrdA2wxxY1g020dxahSpTNhZW8IRroTHWIstzbkTG2VRqKcSI3B56m9Z97dCHtCq8wbLUNbqdT7tPGZ-CFJMOHR9Q093pW8zTpi0q3e5TBmkvNO2Fpv9Cu8DNsXuXVWj_8T-D4hcPtnLr</recordid><startdate>20241028</startdate><enddate>20241028</enddate><creator>Zhang, Xing</creator><creator>Ling, Chongyi</creator><creator>Ren, Siyun</creator><creator>Xi, Hanchen</creator><creator>Ji, Liyao</creator><creator>Wang, Jinlan</creator><creator>Zhu, Jia</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2871-4369</orcidid></search><sort><creationdate>20241028</creationdate><title>Nickel-Doped Facet-Selective Copper Nanowires for Activating CO-to-Ethanol Electrosynthesis</title><author>Zhang, Xing ; Ling, Chongyi ; Ren, Siyun ; Xi, Hanchen ; Ji, Liyao ; Wang, Jinlan ; Zhu, Jia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c220t-e46ca30ba0ed3adbef01bdbe17a2dd9e9b9d43d3252a3ae4a3bff2c3b2186a633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xing</creatorcontrib><creatorcontrib>Ling, Chongyi</creatorcontrib><creatorcontrib>Ren, Siyun</creatorcontrib><creatorcontrib>Xi, Hanchen</creatorcontrib><creatorcontrib>Ji, Liyao</creatorcontrib><creatorcontrib>Wang, Jinlan</creatorcontrib><creatorcontrib>Zhu, Jia</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xing</au><au>Ling, Chongyi</au><au>Ren, Siyun</au><au>Xi, Hanchen</au><au>Ji, Liyao</au><au>Wang, Jinlan</au><au>Zhu, Jia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nickel-Doped Facet-Selective Copper Nanowires for Activating CO-to-Ethanol Electrosynthesis</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-10-28</date><risdate>2024</risdate><spage>e2413111</spage><pages>e2413111-</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>Ethanol isa promising energy vector for closing the anthropogenic carbon cycle through reversible electrochemical redox. Currently, ethanol electrosynthesissuffers from low product selectivity due to the competitive advantage of ethylene in CO /CO electroreduction. Here, a facet-selective metal-doping strategy is reported, tuning the reaction kinetics of CO reduction paths and thus enhancing the ethanol selectivity. The theoretical calculations reveal that nickel (Ni)doped Cu(100) surface facilitates water dissociation to form adsorbed hydrogen, which promotesselective electrochemical hydrogenation of a key C intermediate ( CHCOH) toward ethanol path over ethylene path. Experimentally, a solution-phase synthesis of a Ni-doped {100}-dominated Copper nanowires (Cu NWs) catalyst is reported, enabling an ethanol Faradaic efficiency of 56% and a selectivity ratio of ethanol to ethylene of 2.7, which are ≈4 and 15 times larger than those of undoped Cu NWs, respectively. The operando spectroscopic characterizations confirm that Ni-doping in Cu NWs can alter the interfacial water activity and thus regulate the C product selectivity. With further electrode engineering, a membrane electrode assembly electrolyzer using Ni-doped Cu NWs catalysts demonstrates an ethanol Faradaic efficiency over 50% at 300 mA cm with a full cell voltage of ≈2.7 V and operates stably for over 300 h.</abstract><cop>Germany</cop><pmid>39463129</pmid><doi>10.1002/adma.202413111</doi><orcidid>https://orcid.org/0000-0002-2871-4369</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2024-10, p.e2413111
issn 0935-9648
1521-4095
1521-4095
language eng
recordid cdi_proquest_miscellaneous_3121280637
source Access via Wiley Online Library
title Nickel-Doped Facet-Selective Copper Nanowires for Activating CO-to-Ethanol Electrosynthesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A22%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nickel-Doped%20Facet-Selective%20Copper%20Nanowires%20for%20Activating%20CO-to-Ethanol%20Electrosynthesis&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Zhang,%20Xing&rft.date=2024-10-28&rft.spage=e2413111&rft.pages=e2413111-&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202413111&rft_dat=%3Cproquest_cross%3E3121280637%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3121280637&rft_id=info:pmid/39463129&rfr_iscdi=true