Nickel-Doped Facet-Selective Copper Nanowires for Activating CO-to-Ethanol Electrosynthesis
Ethanol isa promising energy vector for closing the anthropogenic carbon cycle through reversible electrochemical redox. Currently, ethanol electrosynthesissuffers from low product selectivity due to the competitive advantage of ethylene in CO /CO electroreduction. Here, a facet-selective metal-dopi...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2024-10, p.e2413111 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | e2413111 |
container_title | Advanced materials (Weinheim) |
container_volume | |
creator | Zhang, Xing Ling, Chongyi Ren, Siyun Xi, Hanchen Ji, Liyao Wang, Jinlan Zhu, Jia |
description | Ethanol isa promising energy vector for closing the anthropogenic carbon cycle through reversible electrochemical redox. Currently, ethanol electrosynthesissuffers from low product selectivity due to the competitive advantage of ethylene in CO
/CO electroreduction. Here, a facet-selective metal-doping strategy is reported, tuning the reaction kinetics of CO reduction paths and thus enhancing the ethanol selectivity. The theoretical calculations reveal that nickel (Ni)doped Cu(100) surface facilitates water dissociation to form adsorbed hydrogen, which promotesselective electrochemical hydrogenation of a key C
intermediate (
CHCOH) toward ethanol path over ethylene path. Experimentally, a solution-phase synthesis of a Ni-doped {100}-dominated Copper nanowires (Cu NWs) catalyst is reported, enabling an ethanol Faradaic efficiency of 56% and a selectivity ratio of ethanol to ethylene of 2.7, which are ≈4 and 15 times larger than those of undoped Cu NWs, respectively. The operando spectroscopic characterizations confirm that Ni-doping in Cu NWs can alter the interfacial water activity and thus regulate the C
product selectivity. With further electrode engineering, a membrane electrode assembly electrolyzer using Ni-doped Cu NWs catalysts demonstrates an ethanol Faradaic efficiency over 50% at 300 mA cm
with a full cell voltage of ≈2.7 V and operates stably for over 300 h. |
doi_str_mv | 10.1002/adma.202413111 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3121280637</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3121280637</sourcerecordid><originalsourceid>FETCH-LOGICAL-c220t-e46ca30ba0ed3adbef01bdbe17a2dd9e9b9d43d3252a3ae4a3bff2c3b2186a633</originalsourceid><addsrcrecordid>eNo9kDFPwzAQRi0EoqWwMqKMLC5nO3HrsSotIFXtAEwMkWNfaCCJQ-yC-u9J1MJ0w73v090j5JrBmAHwO20rPebAYyYYYydkyBLOaAwqOSVDUCKhSsbTAbnw_gMAlAR5TgZCxVIwrobkbV2YTyzpvWvQRkttMNBnLNGE4hujuWsabKO1rt1P0aKPctdGs36nQ1G_R_MNDY4uwrYDymjRx1rn93XYoi_8JTnLdenx6jhH5HW5eJk_0tXm4Wk-W1HDOQSKsTRaQKYBrdA2wxxY1g020dxahSpTNhZW8IRroTHWIstzbkTG2VRqKcSI3B56m9Z97dCHtCq8wbLUNbqdT7tPGZ-CFJMOHR9Q093pW8zTpi0q3e5TBmkvNO2Fpv9Cu8DNsXuXVWj_8T-D4hcPtnLr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3121280637</pqid></control><display><type>article</type><title>Nickel-Doped Facet-Selective Copper Nanowires for Activating CO-to-Ethanol Electrosynthesis</title><source>Access via Wiley Online Library</source><creator>Zhang, Xing ; Ling, Chongyi ; Ren, Siyun ; Xi, Hanchen ; Ji, Liyao ; Wang, Jinlan ; Zhu, Jia</creator><creatorcontrib>Zhang, Xing ; Ling, Chongyi ; Ren, Siyun ; Xi, Hanchen ; Ji, Liyao ; Wang, Jinlan ; Zhu, Jia</creatorcontrib><description>Ethanol isa promising energy vector for closing the anthropogenic carbon cycle through reversible electrochemical redox. Currently, ethanol electrosynthesissuffers from low product selectivity due to the competitive advantage of ethylene in CO
/CO electroreduction. Here, a facet-selective metal-doping strategy is reported, tuning the reaction kinetics of CO reduction paths and thus enhancing the ethanol selectivity. The theoretical calculations reveal that nickel (Ni)doped Cu(100) surface facilitates water dissociation to form adsorbed hydrogen, which promotesselective electrochemical hydrogenation of a key C
intermediate (
CHCOH) toward ethanol path over ethylene path. Experimentally, a solution-phase synthesis of a Ni-doped {100}-dominated Copper nanowires (Cu NWs) catalyst is reported, enabling an ethanol Faradaic efficiency of 56% and a selectivity ratio of ethanol to ethylene of 2.7, which are ≈4 and 15 times larger than those of undoped Cu NWs, respectively. The operando spectroscopic characterizations confirm that Ni-doping in Cu NWs can alter the interfacial water activity and thus regulate the C
product selectivity. With further electrode engineering, a membrane electrode assembly electrolyzer using Ni-doped Cu NWs catalysts demonstrates an ethanol Faradaic efficiency over 50% at 300 mA cm
with a full cell voltage of ≈2.7 V and operates stably for over 300 h.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202413111</identifier><identifier>PMID: 39463129</identifier><language>eng</language><publisher>Germany</publisher><ispartof>Advanced materials (Weinheim), 2024-10, p.e2413111</ispartof><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c220t-e46ca30ba0ed3adbef01bdbe17a2dd9e9b9d43d3252a3ae4a3bff2c3b2186a633</cites><orcidid>0000-0002-2871-4369</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39463129$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Xing</creatorcontrib><creatorcontrib>Ling, Chongyi</creatorcontrib><creatorcontrib>Ren, Siyun</creatorcontrib><creatorcontrib>Xi, Hanchen</creatorcontrib><creatorcontrib>Ji, Liyao</creatorcontrib><creatorcontrib>Wang, Jinlan</creatorcontrib><creatorcontrib>Zhu, Jia</creatorcontrib><title>Nickel-Doped Facet-Selective Copper Nanowires for Activating CO-to-Ethanol Electrosynthesis</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Ethanol isa promising energy vector for closing the anthropogenic carbon cycle through reversible electrochemical redox. Currently, ethanol electrosynthesissuffers from low product selectivity due to the competitive advantage of ethylene in CO
/CO electroreduction. Here, a facet-selective metal-doping strategy is reported, tuning the reaction kinetics of CO reduction paths and thus enhancing the ethanol selectivity. The theoretical calculations reveal that nickel (Ni)doped Cu(100) surface facilitates water dissociation to form adsorbed hydrogen, which promotesselective electrochemical hydrogenation of a key C
intermediate (
CHCOH) toward ethanol path over ethylene path. Experimentally, a solution-phase synthesis of a Ni-doped {100}-dominated Copper nanowires (Cu NWs) catalyst is reported, enabling an ethanol Faradaic efficiency of 56% and a selectivity ratio of ethanol to ethylene of 2.7, which are ≈4 and 15 times larger than those of undoped Cu NWs, respectively. The operando spectroscopic characterizations confirm that Ni-doping in Cu NWs can alter the interfacial water activity and thus regulate the C
product selectivity. With further electrode engineering, a membrane electrode assembly electrolyzer using Ni-doped Cu NWs catalysts demonstrates an ethanol Faradaic efficiency over 50% at 300 mA cm
with a full cell voltage of ≈2.7 V and operates stably for over 300 h.</description><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kDFPwzAQRi0EoqWwMqKMLC5nO3HrsSotIFXtAEwMkWNfaCCJQ-yC-u9J1MJ0w73v090j5JrBmAHwO20rPebAYyYYYydkyBLOaAwqOSVDUCKhSsbTAbnw_gMAlAR5TgZCxVIwrobkbV2YTyzpvWvQRkttMNBnLNGE4hujuWsabKO1rt1P0aKPctdGs36nQ1G_R_MNDY4uwrYDymjRx1rn93XYoi_8JTnLdenx6jhH5HW5eJk_0tXm4Wk-W1HDOQSKsTRaQKYBrdA2wxxY1g020dxahSpTNhZW8IRroTHWIstzbkTG2VRqKcSI3B56m9Z97dCHtCq8wbLUNbqdT7tPGZ-CFJMOHR9Q093pW8zTpi0q3e5TBmkvNO2Fpv9Cu8DNsXuXVWj_8T-D4hcPtnLr</recordid><startdate>20241028</startdate><enddate>20241028</enddate><creator>Zhang, Xing</creator><creator>Ling, Chongyi</creator><creator>Ren, Siyun</creator><creator>Xi, Hanchen</creator><creator>Ji, Liyao</creator><creator>Wang, Jinlan</creator><creator>Zhu, Jia</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2871-4369</orcidid></search><sort><creationdate>20241028</creationdate><title>Nickel-Doped Facet-Selective Copper Nanowires for Activating CO-to-Ethanol Electrosynthesis</title><author>Zhang, Xing ; Ling, Chongyi ; Ren, Siyun ; Xi, Hanchen ; Ji, Liyao ; Wang, Jinlan ; Zhu, Jia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c220t-e46ca30ba0ed3adbef01bdbe17a2dd9e9b9d43d3252a3ae4a3bff2c3b2186a633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xing</creatorcontrib><creatorcontrib>Ling, Chongyi</creatorcontrib><creatorcontrib>Ren, Siyun</creatorcontrib><creatorcontrib>Xi, Hanchen</creatorcontrib><creatorcontrib>Ji, Liyao</creatorcontrib><creatorcontrib>Wang, Jinlan</creatorcontrib><creatorcontrib>Zhu, Jia</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xing</au><au>Ling, Chongyi</au><au>Ren, Siyun</au><au>Xi, Hanchen</au><au>Ji, Liyao</au><au>Wang, Jinlan</au><au>Zhu, Jia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nickel-Doped Facet-Selective Copper Nanowires for Activating CO-to-Ethanol Electrosynthesis</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-10-28</date><risdate>2024</risdate><spage>e2413111</spage><pages>e2413111-</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>Ethanol isa promising energy vector for closing the anthropogenic carbon cycle through reversible electrochemical redox. Currently, ethanol electrosynthesissuffers from low product selectivity due to the competitive advantage of ethylene in CO
/CO electroreduction. Here, a facet-selective metal-doping strategy is reported, tuning the reaction kinetics of CO reduction paths and thus enhancing the ethanol selectivity. The theoretical calculations reveal that nickel (Ni)doped Cu(100) surface facilitates water dissociation to form adsorbed hydrogen, which promotesselective electrochemical hydrogenation of a key C
intermediate (
CHCOH) toward ethanol path over ethylene path. Experimentally, a solution-phase synthesis of a Ni-doped {100}-dominated Copper nanowires (Cu NWs) catalyst is reported, enabling an ethanol Faradaic efficiency of 56% and a selectivity ratio of ethanol to ethylene of 2.7, which are ≈4 and 15 times larger than those of undoped Cu NWs, respectively. The operando spectroscopic characterizations confirm that Ni-doping in Cu NWs can alter the interfacial water activity and thus regulate the C
product selectivity. With further electrode engineering, a membrane electrode assembly electrolyzer using Ni-doped Cu NWs catalysts demonstrates an ethanol Faradaic efficiency over 50% at 300 mA cm
with a full cell voltage of ≈2.7 V and operates stably for over 300 h.</abstract><cop>Germany</cop><pmid>39463129</pmid><doi>10.1002/adma.202413111</doi><orcidid>https://orcid.org/0000-0002-2871-4369</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2024-10, p.e2413111 |
issn | 0935-9648 1521-4095 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_3121280637 |
source | Access via Wiley Online Library |
title | Nickel-Doped Facet-Selective Copper Nanowires for Activating CO-to-Ethanol Electrosynthesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A22%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nickel-Doped%20Facet-Selective%20Copper%20Nanowires%20for%20Activating%20CO-to-Ethanol%20Electrosynthesis&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Zhang,%20Xing&rft.date=2024-10-28&rft.spage=e2413111&rft.pages=e2413111-&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202413111&rft_dat=%3Cproquest_cross%3E3121280637%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3121280637&rft_id=info:pmid/39463129&rfr_iscdi=true |