Defining Golden Batches in Biomanufacturing Processes From Internal Metabolic Activity to Detect Process Changes That May Affect Product Quality

Cellular metabolism plays a role in the observed variability of a drug substance's Critical Quality Attributes (CQAs) made by biomanufacturing processes. Therefore, here we describe a new approach for monitoring biomanufacturing processes that measures a set of metabolic reaction rates (named C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology and bioengineering 2024-10
Hauptverfasser: Bush, Xin, Fratz-Berilla, Erica J, Kohnhorst, Casey L, King, Roberta, Agarabi, Cyrus, Powers, David N, Trunfio, Nicholas
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Biotechnology and bioengineering
container_volume
creator Bush, Xin
Fratz-Berilla, Erica J
Kohnhorst, Casey L
King, Roberta
Agarabi, Cyrus
Powers, David N
Trunfio, Nicholas
description Cellular metabolism plays a role in the observed variability of a drug substance's Critical Quality Attributes (CQAs) made by biomanufacturing processes. Therefore, here we describe a new approach for monitoring biomanufacturing processes that measures a set of metabolic reaction rates (named Critical Metabolic Parameters (CMP) in addition to the macroscopic process conditions currently being used as Critical Process Parameters (CPP) for biomanufacturing. Constraint-based systems biology models like Flux Balance Analysis (FBA) are used to estimate metabolic reaction rates, and metabolic rates are used as inputs for multivariate Batch Evolution Models (BEM). Metabolic activity was reproducible among batches and could be monitored to detect a deliberately induced macroscopic process shift (i.e., temperature change). The CMP approach has the potential to enable "golden batches" in biomanufacturing processes to be defined from the internal metabolic activity and to aid in detecting process changes that may impact the quality of the product. Overall, the data suggested that monitoring of metabolic activity has promise for biomanufacturing process control.
doi_str_mv 10.1002/bit.28873
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3121280450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3121280450</sourcerecordid><originalsourceid>FETCH-LOGICAL-c175t-7837d67579661759b0af08b10407e75752b2455f65998fdfd6275be7aee8cdb43</originalsourceid><addsrcrecordid>eNo9kc1OxCAUhYnR6Di68AUMS11UKS1QluOMf8kYNdF1Q-nFwbRFgZrMW_jIoo6u7t93zuIehI5ycpYTQs8bG89oVYliC01yIkVGqCTbaEII4VnBJN1D-yG8plFUnO-ivUKWnEohJuhzAcYOdnjB165rYcAXKuoVBGxTa12vhtEoHUf_jTx4pyGEdL3yrse3QwQ_qA7fQVSN66zGMx3th41rHB1eQAQd_0R4vlLDS5I-rVTEd2qNZ8Zs7u2Y6uOouqQ8QDtGdQEON3WKnq8un-Y32fL--nY-W2Y6FyxmoipEywUTkvO0kA1RhlRNTkoiIK0ZbWjJmOFMysq0puVUsAaEAqh025TFFJ38-r559z5CiHVvg4auUwO4MdRFTnNakZKRhJ7-otq7EDyY-s3bXvl1nZP6O4A6BVD_BJDY443t2PTQ_pN_Hy--AINrghU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3121280450</pqid></control><display><type>article</type><title>Defining Golden Batches in Biomanufacturing Processes From Internal Metabolic Activity to Detect Process Changes That May Affect Product Quality</title><source>Wiley Online Library All Journals</source><creator>Bush, Xin ; Fratz-Berilla, Erica J ; Kohnhorst, Casey L ; King, Roberta ; Agarabi, Cyrus ; Powers, David N ; Trunfio, Nicholas</creator><creatorcontrib>Bush, Xin ; Fratz-Berilla, Erica J ; Kohnhorst, Casey L ; King, Roberta ; Agarabi, Cyrus ; Powers, David N ; Trunfio, Nicholas</creatorcontrib><description>Cellular metabolism plays a role in the observed variability of a drug substance's Critical Quality Attributes (CQAs) made by biomanufacturing processes. Therefore, here we describe a new approach for monitoring biomanufacturing processes that measures a set of metabolic reaction rates (named Critical Metabolic Parameters (CMP) in addition to the macroscopic process conditions currently being used as Critical Process Parameters (CPP) for biomanufacturing. Constraint-based systems biology models like Flux Balance Analysis (FBA) are used to estimate metabolic reaction rates, and metabolic rates are used as inputs for multivariate Batch Evolution Models (BEM). Metabolic activity was reproducible among batches and could be monitored to detect a deliberately induced macroscopic process shift (i.e., temperature change). The CMP approach has the potential to enable "golden batches" in biomanufacturing processes to be defined from the internal metabolic activity and to aid in detecting process changes that may impact the quality of the product. Overall, the data suggested that monitoring of metabolic activity has promise for biomanufacturing process control.</description><identifier>ISSN: 0006-3592</identifier><identifier>ISSN: 1097-0290</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.28873</identifier><identifier>PMID: 39462977</identifier><language>eng</language><publisher>United States</publisher><ispartof>Biotechnology and bioengineering, 2024-10</ispartof><rights>2024 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c175t-7837d67579661759b0af08b10407e75752b2455f65998fdfd6275be7aee8cdb43</cites><orcidid>0000-0002-9259-0540 ; 0000-0002-5568-5938</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39462977$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bush, Xin</creatorcontrib><creatorcontrib>Fratz-Berilla, Erica J</creatorcontrib><creatorcontrib>Kohnhorst, Casey L</creatorcontrib><creatorcontrib>King, Roberta</creatorcontrib><creatorcontrib>Agarabi, Cyrus</creatorcontrib><creatorcontrib>Powers, David N</creatorcontrib><creatorcontrib>Trunfio, Nicholas</creatorcontrib><title>Defining Golden Batches in Biomanufacturing Processes From Internal Metabolic Activity to Detect Process Changes That May Affect Product Quality</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol Bioeng</addtitle><description>Cellular metabolism plays a role in the observed variability of a drug substance's Critical Quality Attributes (CQAs) made by biomanufacturing processes. Therefore, here we describe a new approach for monitoring biomanufacturing processes that measures a set of metabolic reaction rates (named Critical Metabolic Parameters (CMP) in addition to the macroscopic process conditions currently being used as Critical Process Parameters (CPP) for biomanufacturing. Constraint-based systems biology models like Flux Balance Analysis (FBA) are used to estimate metabolic reaction rates, and metabolic rates are used as inputs for multivariate Batch Evolution Models (BEM). Metabolic activity was reproducible among batches and could be monitored to detect a deliberately induced macroscopic process shift (i.e., temperature change). The CMP approach has the potential to enable "golden batches" in biomanufacturing processes to be defined from the internal metabolic activity and to aid in detecting process changes that may impact the quality of the product. Overall, the data suggested that monitoring of metabolic activity has promise for biomanufacturing process control.</description><issn>0006-3592</issn><issn>1097-0290</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kc1OxCAUhYnR6Di68AUMS11UKS1QluOMf8kYNdF1Q-nFwbRFgZrMW_jIoo6u7t93zuIehI5ycpYTQs8bG89oVYliC01yIkVGqCTbaEII4VnBJN1D-yG8plFUnO-ivUKWnEohJuhzAcYOdnjB165rYcAXKuoVBGxTa12vhtEoHUf_jTx4pyGEdL3yrse3QwQ_qA7fQVSN66zGMx3th41rHB1eQAQd_0R4vlLDS5I-rVTEd2qNZ8Zs7u2Y6uOouqQ8QDtGdQEON3WKnq8un-Y32fL--nY-W2Y6FyxmoipEywUTkvO0kA1RhlRNTkoiIK0ZbWjJmOFMysq0puVUsAaEAqh025TFFJ38-r559z5CiHVvg4auUwO4MdRFTnNakZKRhJ7-otq7EDyY-s3bXvl1nZP6O4A6BVD_BJDY443t2PTQ_pN_Hy--AINrghU</recordid><startdate>20241027</startdate><enddate>20241027</enddate><creator>Bush, Xin</creator><creator>Fratz-Berilla, Erica J</creator><creator>Kohnhorst, Casey L</creator><creator>King, Roberta</creator><creator>Agarabi, Cyrus</creator><creator>Powers, David N</creator><creator>Trunfio, Nicholas</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9259-0540</orcidid><orcidid>https://orcid.org/0000-0002-5568-5938</orcidid></search><sort><creationdate>20241027</creationdate><title>Defining Golden Batches in Biomanufacturing Processes From Internal Metabolic Activity to Detect Process Changes That May Affect Product Quality</title><author>Bush, Xin ; Fratz-Berilla, Erica J ; Kohnhorst, Casey L ; King, Roberta ; Agarabi, Cyrus ; Powers, David N ; Trunfio, Nicholas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c175t-7837d67579661759b0af08b10407e75752b2455f65998fdfd6275be7aee8cdb43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bush, Xin</creatorcontrib><creatorcontrib>Fratz-Berilla, Erica J</creatorcontrib><creatorcontrib>Kohnhorst, Casey L</creatorcontrib><creatorcontrib>King, Roberta</creatorcontrib><creatorcontrib>Agarabi, Cyrus</creatorcontrib><creatorcontrib>Powers, David N</creatorcontrib><creatorcontrib>Trunfio, Nicholas</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bush, Xin</au><au>Fratz-Berilla, Erica J</au><au>Kohnhorst, Casey L</au><au>King, Roberta</au><au>Agarabi, Cyrus</au><au>Powers, David N</au><au>Trunfio, Nicholas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defining Golden Batches in Biomanufacturing Processes From Internal Metabolic Activity to Detect Process Changes That May Affect Product Quality</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol Bioeng</addtitle><date>2024-10-27</date><risdate>2024</risdate><issn>0006-3592</issn><issn>1097-0290</issn><eissn>1097-0290</eissn><abstract>Cellular metabolism plays a role in the observed variability of a drug substance's Critical Quality Attributes (CQAs) made by biomanufacturing processes. Therefore, here we describe a new approach for monitoring biomanufacturing processes that measures a set of metabolic reaction rates (named Critical Metabolic Parameters (CMP) in addition to the macroscopic process conditions currently being used as Critical Process Parameters (CPP) for biomanufacturing. Constraint-based systems biology models like Flux Balance Analysis (FBA) are used to estimate metabolic reaction rates, and metabolic rates are used as inputs for multivariate Batch Evolution Models (BEM). Metabolic activity was reproducible among batches and could be monitored to detect a deliberately induced macroscopic process shift (i.e., temperature change). The CMP approach has the potential to enable "golden batches" in biomanufacturing processes to be defined from the internal metabolic activity and to aid in detecting process changes that may impact the quality of the product. Overall, the data suggested that monitoring of metabolic activity has promise for biomanufacturing process control.</abstract><cop>United States</cop><pmid>39462977</pmid><doi>10.1002/bit.28873</doi><orcidid>https://orcid.org/0000-0002-9259-0540</orcidid><orcidid>https://orcid.org/0000-0002-5568-5938</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0006-3592
ispartof Biotechnology and bioengineering, 2024-10
issn 0006-3592
1097-0290
1097-0290
language eng
recordid cdi_proquest_miscellaneous_3121280450
source Wiley Online Library All Journals
title Defining Golden Batches in Biomanufacturing Processes From Internal Metabolic Activity to Detect Process Changes That May Affect Product Quality
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T19%3A01%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defining%20Golden%20Batches%20in%20Biomanufacturing%20Processes%20From%20Internal%20Metabolic%20Activity%20to%20Detect%20Process%20Changes%20That%20May%20Affect%20Product%20Quality&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Bush,%20Xin&rft.date=2024-10-27&rft.issn=0006-3592&rft.eissn=1097-0290&rft_id=info:doi/10.1002/bit.28873&rft_dat=%3Cproquest_cross%3E3121280450%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3121280450&rft_id=info:pmid/39462977&rfr_iscdi=true