Realizing Dual-Mode Zinc-Ion Storage of Generic Vanadium-Based Cathodes via Organic Molecule Intercalation

Intercalation engineering is a promising strategy to promote zinc-ion storage of layered cathodes; however, is impeded by the complex fabrication routes and inert electrochemical behaviors of intercalators. Herein, an organic imidazole intercalation strategy is proposed, where V2O5 and NH4V3O8 (NVO)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2024-11, Vol.18 (44), p.30896-30909
Hauptverfasser: Tang, Hongwei, Wan, Kexin, Zhang, Kang, Wang, Ao, Wang, Mingkun, Xie, Juan, Su, Pengcheng, Dong, Huilong, Sun, Jingyu, Li, Yihui
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 30909
container_issue 44
container_start_page 30896
container_title ACS nano
container_volume 18
creator Tang, Hongwei
Wan, Kexin
Zhang, Kang
Wang, Ao
Wang, Mingkun
Xie, Juan
Su, Pengcheng
Dong, Huilong
Sun, Jingyu
Li, Yihui
description Intercalation engineering is a promising strategy to promote zinc-ion storage of layered cathodes; however, is impeded by the complex fabrication routes and inert electrochemical behaviors of intercalators. Herein, an organic imidazole intercalation strategy is proposed, where V2O5 and NH4V3O8 (NVO) model materials are adopted to verify the feasibility of the imidazole intercalator in improving the zinc storage capabilities of vanadium-based cathodes. The intercalated imidazole molecules could not only expand interlayer spacing and strengthen structural stability by serving as extra “pillars” but also provide extra coordination sites for zinc storage via the coordination reaction between Zn2+ and the CN group. This gives rise to a dual-mode ion storage mechanism and favorable electrochemical performances. As a result, imidazole-intercalated V2O5 delivers a capacity of 179.9 mAh g–1 after 5000 cycles at 20 A g–1, while the imidazole-intercalated NVO harvests a high capacity output of 170.2 mAh g–1 after 700 cycles at 2 A g–1. This work is anticipated to boost the application potentials of vanadium-based cathodes in aqueous zinc-ion batteries.
doi_str_mv 10.1021/acsnano.4c12849
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3121064562</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3121064562</sourcerecordid><originalsourceid>FETCH-LOGICAL-a217t-be3039bbd576810cb4f1f1fcf101e55e91116723a534138b0acf082664f8cb843</originalsourceid><addsrcrecordid>eNp1kE1L5EAQhhtR_FrP3qSPwhLtSnc6yVFndXZAGdBVxEuodCpjD5lu7U4E_fWbZWa9SR2qDs_7Qj2MHYM4A5HCOZro0PkzZSAtVLnF9qGUOhGFftr-ujPYYwcxLoXI8iLXu2xPlkqLHNQ-W94RdvbTugX_NWCX3PqG-LN1Jpl5x-97H3BB3Ld8So6CNfwRHTZ2WCWXGKnhE-xfxkjk7xb5PCzQjcyt78gMHfGZ6ykY7LC33v1gOy12kY42-5A9XF_9mfxObubT2eTiJsEU8j6pSQpZ1nWT5boAYWrVwjimBQGUZVQCgM5TiZlUIItaoGlFkWqt2sLUhZKH7HTd-xr820Cxr1Y2Guo6dOSHWElIQWiV6XREz9eoCT7GQG31GuwKw0cFovonuNoIrjaCx8TJpnyoV9R88f-NjsDPNTAmq6Ufght__bbuL4QJhm4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3121064562</pqid></control><display><type>article</type><title>Realizing Dual-Mode Zinc-Ion Storage of Generic Vanadium-Based Cathodes via Organic Molecule Intercalation</title><source>ACS Publications</source><creator>Tang, Hongwei ; Wan, Kexin ; Zhang, Kang ; Wang, Ao ; Wang, Mingkun ; Xie, Juan ; Su, Pengcheng ; Dong, Huilong ; Sun, Jingyu ; Li, Yihui</creator><creatorcontrib>Tang, Hongwei ; Wan, Kexin ; Zhang, Kang ; Wang, Ao ; Wang, Mingkun ; Xie, Juan ; Su, Pengcheng ; Dong, Huilong ; Sun, Jingyu ; Li, Yihui</creatorcontrib><description>Intercalation engineering is a promising strategy to promote zinc-ion storage of layered cathodes; however, is impeded by the complex fabrication routes and inert electrochemical behaviors of intercalators. Herein, an organic imidazole intercalation strategy is proposed, where V2O5 and NH4V3O8 (NVO) model materials are adopted to verify the feasibility of the imidazole intercalator in improving the zinc storage capabilities of vanadium-based cathodes. The intercalated imidazole molecules could not only expand interlayer spacing and strengthen structural stability by serving as extra “pillars” but also provide extra coordination sites for zinc storage via the coordination reaction between Zn2+ and the CN group. This gives rise to a dual-mode ion storage mechanism and favorable electrochemical performances. As a result, imidazole-intercalated V2O5 delivers a capacity of 179.9 mAh g–1 after 5000 cycles at 20 A g–1, while the imidazole-intercalated NVO harvests a high capacity output of 170.2 mAh g–1 after 700 cycles at 2 A g–1. This work is anticipated to boost the application potentials of vanadium-based cathodes in aqueous zinc-ion batteries.</description><identifier>ISSN: 1936-0851</identifier><identifier>ISSN: 1936-086X</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.4c12849</identifier><identifier>PMID: 39460714</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2024-11, Vol.18 (44), p.30896-30909</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a217t-be3039bbd576810cb4f1f1fcf101e55e91116723a534138b0acf082664f8cb843</cites><orcidid>0000-0002-4436-6392 ; 0000-0002-9596-0412 ; 0000-0002-9812-3046</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.4c12849$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.4c12849$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39460714$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tang, Hongwei</creatorcontrib><creatorcontrib>Wan, Kexin</creatorcontrib><creatorcontrib>Zhang, Kang</creatorcontrib><creatorcontrib>Wang, Ao</creatorcontrib><creatorcontrib>Wang, Mingkun</creatorcontrib><creatorcontrib>Xie, Juan</creatorcontrib><creatorcontrib>Su, Pengcheng</creatorcontrib><creatorcontrib>Dong, Huilong</creatorcontrib><creatorcontrib>Sun, Jingyu</creatorcontrib><creatorcontrib>Li, Yihui</creatorcontrib><title>Realizing Dual-Mode Zinc-Ion Storage of Generic Vanadium-Based Cathodes via Organic Molecule Intercalation</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Intercalation engineering is a promising strategy to promote zinc-ion storage of layered cathodes; however, is impeded by the complex fabrication routes and inert electrochemical behaviors of intercalators. Herein, an organic imidazole intercalation strategy is proposed, where V2O5 and NH4V3O8 (NVO) model materials are adopted to verify the feasibility of the imidazole intercalator in improving the zinc storage capabilities of vanadium-based cathodes. The intercalated imidazole molecules could not only expand interlayer spacing and strengthen structural stability by serving as extra “pillars” but also provide extra coordination sites for zinc storage via the coordination reaction between Zn2+ and the CN group. This gives rise to a dual-mode ion storage mechanism and favorable electrochemical performances. As a result, imidazole-intercalated V2O5 delivers a capacity of 179.9 mAh g–1 after 5000 cycles at 20 A g–1, while the imidazole-intercalated NVO harvests a high capacity output of 170.2 mAh g–1 after 700 cycles at 2 A g–1. This work is anticipated to boost the application potentials of vanadium-based cathodes in aqueous zinc-ion batteries.</description><issn>1936-0851</issn><issn>1936-086X</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kE1L5EAQhhtR_FrP3qSPwhLtSnc6yVFndXZAGdBVxEuodCpjD5lu7U4E_fWbZWa9SR2qDs_7Qj2MHYM4A5HCOZro0PkzZSAtVLnF9qGUOhGFftr-ujPYYwcxLoXI8iLXu2xPlkqLHNQ-W94RdvbTugX_NWCX3PqG-LN1Jpl5x-97H3BB3Ld8So6CNfwRHTZ2WCWXGKnhE-xfxkjk7xb5PCzQjcyt78gMHfGZ6ykY7LC33v1gOy12kY42-5A9XF_9mfxObubT2eTiJsEU8j6pSQpZ1nWT5boAYWrVwjimBQGUZVQCgM5TiZlUIItaoGlFkWqt2sLUhZKH7HTd-xr820Cxr1Y2Guo6dOSHWElIQWiV6XREz9eoCT7GQG31GuwKw0cFovonuNoIrjaCx8TJpnyoV9R88f-NjsDPNTAmq6Ufght__bbuL4QJhm4</recordid><startdate>20241105</startdate><enddate>20241105</enddate><creator>Tang, Hongwei</creator><creator>Wan, Kexin</creator><creator>Zhang, Kang</creator><creator>Wang, Ao</creator><creator>Wang, Mingkun</creator><creator>Xie, Juan</creator><creator>Su, Pengcheng</creator><creator>Dong, Huilong</creator><creator>Sun, Jingyu</creator><creator>Li, Yihui</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4436-6392</orcidid><orcidid>https://orcid.org/0000-0002-9596-0412</orcidid><orcidid>https://orcid.org/0000-0002-9812-3046</orcidid></search><sort><creationdate>20241105</creationdate><title>Realizing Dual-Mode Zinc-Ion Storage of Generic Vanadium-Based Cathodes via Organic Molecule Intercalation</title><author>Tang, Hongwei ; Wan, Kexin ; Zhang, Kang ; Wang, Ao ; Wang, Mingkun ; Xie, Juan ; Su, Pengcheng ; Dong, Huilong ; Sun, Jingyu ; Li, Yihui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a217t-be3039bbd576810cb4f1f1fcf101e55e91116723a534138b0acf082664f8cb843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Hongwei</creatorcontrib><creatorcontrib>Wan, Kexin</creatorcontrib><creatorcontrib>Zhang, Kang</creatorcontrib><creatorcontrib>Wang, Ao</creatorcontrib><creatorcontrib>Wang, Mingkun</creatorcontrib><creatorcontrib>Xie, Juan</creatorcontrib><creatorcontrib>Su, Pengcheng</creatorcontrib><creatorcontrib>Dong, Huilong</creatorcontrib><creatorcontrib>Sun, Jingyu</creatorcontrib><creatorcontrib>Li, Yihui</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Hongwei</au><au>Wan, Kexin</au><au>Zhang, Kang</au><au>Wang, Ao</au><au>Wang, Mingkun</au><au>Xie, Juan</au><au>Su, Pengcheng</au><au>Dong, Huilong</au><au>Sun, Jingyu</au><au>Li, Yihui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Realizing Dual-Mode Zinc-Ion Storage of Generic Vanadium-Based Cathodes via Organic Molecule Intercalation</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2024-11-05</date><risdate>2024</risdate><volume>18</volume><issue>44</issue><spage>30896</spage><epage>30909</epage><pages>30896-30909</pages><issn>1936-0851</issn><issn>1936-086X</issn><eissn>1936-086X</eissn><abstract>Intercalation engineering is a promising strategy to promote zinc-ion storage of layered cathodes; however, is impeded by the complex fabrication routes and inert electrochemical behaviors of intercalators. Herein, an organic imidazole intercalation strategy is proposed, where V2O5 and NH4V3O8 (NVO) model materials are adopted to verify the feasibility of the imidazole intercalator in improving the zinc storage capabilities of vanadium-based cathodes. The intercalated imidazole molecules could not only expand interlayer spacing and strengthen structural stability by serving as extra “pillars” but also provide extra coordination sites for zinc storage via the coordination reaction between Zn2+ and the CN group. This gives rise to a dual-mode ion storage mechanism and favorable electrochemical performances. As a result, imidazole-intercalated V2O5 delivers a capacity of 179.9 mAh g–1 after 5000 cycles at 20 A g–1, while the imidazole-intercalated NVO harvests a high capacity output of 170.2 mAh g–1 after 700 cycles at 2 A g–1. This work is anticipated to boost the application potentials of vanadium-based cathodes in aqueous zinc-ion batteries.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39460714</pmid><doi>10.1021/acsnano.4c12849</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4436-6392</orcidid><orcidid>https://orcid.org/0000-0002-9596-0412</orcidid><orcidid>https://orcid.org/0000-0002-9812-3046</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2024-11, Vol.18 (44), p.30896-30909
issn 1936-0851
1936-086X
1936-086X
language eng
recordid cdi_proquest_miscellaneous_3121064562
source ACS Publications
title Realizing Dual-Mode Zinc-Ion Storage of Generic Vanadium-Based Cathodes via Organic Molecule Intercalation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A24%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Realizing%20Dual-Mode%20Zinc-Ion%20Storage%20of%20Generic%20Vanadium-Based%20Cathodes%20via%20Organic%20Molecule%20Intercalation&rft.jtitle=ACS%20nano&rft.au=Tang,%20Hongwei&rft.date=2024-11-05&rft.volume=18&rft.issue=44&rft.spage=30896&rft.epage=30909&rft.pages=30896-30909&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.4c12849&rft_dat=%3Cproquest_cross%3E3121064562%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3121064562&rft_id=info:pmid/39460714&rfr_iscdi=true