Realizing Dual-Mode Zinc-Ion Storage of Generic Vanadium-Based Cathodes via Organic Molecule Intercalation
Intercalation engineering is a promising strategy to promote zinc-ion storage of layered cathodes; however, is impeded by the complex fabrication routes and inert electrochemical behaviors of intercalators. Herein, an organic imidazole intercalation strategy is proposed, where V2O5 and NH4V3O8 (NVO)...
Gespeichert in:
Veröffentlicht in: | ACS nano 2024-11, Vol.18 (44), p.30896-30909 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 30909 |
---|---|
container_issue | 44 |
container_start_page | 30896 |
container_title | ACS nano |
container_volume | 18 |
creator | Tang, Hongwei Wan, Kexin Zhang, Kang Wang, Ao Wang, Mingkun Xie, Juan Su, Pengcheng Dong, Huilong Sun, Jingyu Li, Yihui |
description | Intercalation engineering is a promising strategy to promote zinc-ion storage of layered cathodes; however, is impeded by the complex fabrication routes and inert electrochemical behaviors of intercalators. Herein, an organic imidazole intercalation strategy is proposed, where V2O5 and NH4V3O8 (NVO) model materials are adopted to verify the feasibility of the imidazole intercalator in improving the zinc storage capabilities of vanadium-based cathodes. The intercalated imidazole molecules could not only expand interlayer spacing and strengthen structural stability by serving as extra “pillars” but also provide extra coordination sites for zinc storage via the coordination reaction between Zn2+ and the CN group. This gives rise to a dual-mode ion storage mechanism and favorable electrochemical performances. As a result, imidazole-intercalated V2O5 delivers a capacity of 179.9 mAh g–1 after 5000 cycles at 20 A g–1, while the imidazole-intercalated NVO harvests a high capacity output of 170.2 mAh g–1 after 700 cycles at 2 A g–1. This work is anticipated to boost the application potentials of vanadium-based cathodes in aqueous zinc-ion batteries. |
doi_str_mv | 10.1021/acsnano.4c12849 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3121064562</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3121064562</sourcerecordid><originalsourceid>FETCH-LOGICAL-a217t-be3039bbd576810cb4f1f1fcf101e55e91116723a534138b0acf082664f8cb843</originalsourceid><addsrcrecordid>eNp1kE1L5EAQhhtR_FrP3qSPwhLtSnc6yVFndXZAGdBVxEuodCpjD5lu7U4E_fWbZWa9SR2qDs_7Qj2MHYM4A5HCOZro0PkzZSAtVLnF9qGUOhGFftr-ujPYYwcxLoXI8iLXu2xPlkqLHNQ-W94RdvbTugX_NWCX3PqG-LN1Jpl5x-97H3BB3Ld8So6CNfwRHTZ2WCWXGKnhE-xfxkjk7xb5PCzQjcyt78gMHfGZ6ykY7LC33v1gOy12kY42-5A9XF_9mfxObubT2eTiJsEU8j6pSQpZ1nWT5boAYWrVwjimBQGUZVQCgM5TiZlUIItaoGlFkWqt2sLUhZKH7HTd-xr820Cxr1Y2Guo6dOSHWElIQWiV6XREz9eoCT7GQG31GuwKw0cFovonuNoIrjaCx8TJpnyoV9R88f-NjsDPNTAmq6Ufght__bbuL4QJhm4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3121064562</pqid></control><display><type>article</type><title>Realizing Dual-Mode Zinc-Ion Storage of Generic Vanadium-Based Cathodes via Organic Molecule Intercalation</title><source>ACS Publications</source><creator>Tang, Hongwei ; Wan, Kexin ; Zhang, Kang ; Wang, Ao ; Wang, Mingkun ; Xie, Juan ; Su, Pengcheng ; Dong, Huilong ; Sun, Jingyu ; Li, Yihui</creator><creatorcontrib>Tang, Hongwei ; Wan, Kexin ; Zhang, Kang ; Wang, Ao ; Wang, Mingkun ; Xie, Juan ; Su, Pengcheng ; Dong, Huilong ; Sun, Jingyu ; Li, Yihui</creatorcontrib><description>Intercalation engineering is a promising strategy to promote zinc-ion storage of layered cathodes; however, is impeded by the complex fabrication routes and inert electrochemical behaviors of intercalators. Herein, an organic imidazole intercalation strategy is proposed, where V2O5 and NH4V3O8 (NVO) model materials are adopted to verify the feasibility of the imidazole intercalator in improving the zinc storage capabilities of vanadium-based cathodes. The intercalated imidazole molecules could not only expand interlayer spacing and strengthen structural stability by serving as extra “pillars” but also provide extra coordination sites for zinc storage via the coordination reaction between Zn2+ and the CN group. This gives rise to a dual-mode ion storage mechanism and favorable electrochemical performances. As a result, imidazole-intercalated V2O5 delivers a capacity of 179.9 mAh g–1 after 5000 cycles at 20 A g–1, while the imidazole-intercalated NVO harvests a high capacity output of 170.2 mAh g–1 after 700 cycles at 2 A g–1. This work is anticipated to boost the application potentials of vanadium-based cathodes in aqueous zinc-ion batteries.</description><identifier>ISSN: 1936-0851</identifier><identifier>ISSN: 1936-086X</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.4c12849</identifier><identifier>PMID: 39460714</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2024-11, Vol.18 (44), p.30896-30909</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a217t-be3039bbd576810cb4f1f1fcf101e55e91116723a534138b0acf082664f8cb843</cites><orcidid>0000-0002-4436-6392 ; 0000-0002-9596-0412 ; 0000-0002-9812-3046</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.4c12849$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.4c12849$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39460714$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tang, Hongwei</creatorcontrib><creatorcontrib>Wan, Kexin</creatorcontrib><creatorcontrib>Zhang, Kang</creatorcontrib><creatorcontrib>Wang, Ao</creatorcontrib><creatorcontrib>Wang, Mingkun</creatorcontrib><creatorcontrib>Xie, Juan</creatorcontrib><creatorcontrib>Su, Pengcheng</creatorcontrib><creatorcontrib>Dong, Huilong</creatorcontrib><creatorcontrib>Sun, Jingyu</creatorcontrib><creatorcontrib>Li, Yihui</creatorcontrib><title>Realizing Dual-Mode Zinc-Ion Storage of Generic Vanadium-Based Cathodes via Organic Molecule Intercalation</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Intercalation engineering is a promising strategy to promote zinc-ion storage of layered cathodes; however, is impeded by the complex fabrication routes and inert electrochemical behaviors of intercalators. Herein, an organic imidazole intercalation strategy is proposed, where V2O5 and NH4V3O8 (NVO) model materials are adopted to verify the feasibility of the imidazole intercalator in improving the zinc storage capabilities of vanadium-based cathodes. The intercalated imidazole molecules could not only expand interlayer spacing and strengthen structural stability by serving as extra “pillars” but also provide extra coordination sites for zinc storage via the coordination reaction between Zn2+ and the CN group. This gives rise to a dual-mode ion storage mechanism and favorable electrochemical performances. As a result, imidazole-intercalated V2O5 delivers a capacity of 179.9 mAh g–1 after 5000 cycles at 20 A g–1, while the imidazole-intercalated NVO harvests a high capacity output of 170.2 mAh g–1 after 700 cycles at 2 A g–1. This work is anticipated to boost the application potentials of vanadium-based cathodes in aqueous zinc-ion batteries.</description><issn>1936-0851</issn><issn>1936-086X</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kE1L5EAQhhtR_FrP3qSPwhLtSnc6yVFndXZAGdBVxEuodCpjD5lu7U4E_fWbZWa9SR2qDs_7Qj2MHYM4A5HCOZro0PkzZSAtVLnF9qGUOhGFftr-ujPYYwcxLoXI8iLXu2xPlkqLHNQ-W94RdvbTugX_NWCX3PqG-LN1Jpl5x-97H3BB3Ld8So6CNfwRHTZ2WCWXGKnhE-xfxkjk7xb5PCzQjcyt78gMHfGZ6ykY7LC33v1gOy12kY42-5A9XF_9mfxObubT2eTiJsEU8j6pSQpZ1nWT5boAYWrVwjimBQGUZVQCgM5TiZlUIItaoGlFkWqt2sLUhZKH7HTd-xr820Cxr1Y2Guo6dOSHWElIQWiV6XREz9eoCT7GQG31GuwKw0cFovonuNoIrjaCx8TJpnyoV9R88f-NjsDPNTAmq6Ufght__bbuL4QJhm4</recordid><startdate>20241105</startdate><enddate>20241105</enddate><creator>Tang, Hongwei</creator><creator>Wan, Kexin</creator><creator>Zhang, Kang</creator><creator>Wang, Ao</creator><creator>Wang, Mingkun</creator><creator>Xie, Juan</creator><creator>Su, Pengcheng</creator><creator>Dong, Huilong</creator><creator>Sun, Jingyu</creator><creator>Li, Yihui</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4436-6392</orcidid><orcidid>https://orcid.org/0000-0002-9596-0412</orcidid><orcidid>https://orcid.org/0000-0002-9812-3046</orcidid></search><sort><creationdate>20241105</creationdate><title>Realizing Dual-Mode Zinc-Ion Storage of Generic Vanadium-Based Cathodes via Organic Molecule Intercalation</title><author>Tang, Hongwei ; Wan, Kexin ; Zhang, Kang ; Wang, Ao ; Wang, Mingkun ; Xie, Juan ; Su, Pengcheng ; Dong, Huilong ; Sun, Jingyu ; Li, Yihui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a217t-be3039bbd576810cb4f1f1fcf101e55e91116723a534138b0acf082664f8cb843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Hongwei</creatorcontrib><creatorcontrib>Wan, Kexin</creatorcontrib><creatorcontrib>Zhang, Kang</creatorcontrib><creatorcontrib>Wang, Ao</creatorcontrib><creatorcontrib>Wang, Mingkun</creatorcontrib><creatorcontrib>Xie, Juan</creatorcontrib><creatorcontrib>Su, Pengcheng</creatorcontrib><creatorcontrib>Dong, Huilong</creatorcontrib><creatorcontrib>Sun, Jingyu</creatorcontrib><creatorcontrib>Li, Yihui</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Hongwei</au><au>Wan, Kexin</au><au>Zhang, Kang</au><au>Wang, Ao</au><au>Wang, Mingkun</au><au>Xie, Juan</au><au>Su, Pengcheng</au><au>Dong, Huilong</au><au>Sun, Jingyu</au><au>Li, Yihui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Realizing Dual-Mode Zinc-Ion Storage of Generic Vanadium-Based Cathodes via Organic Molecule Intercalation</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2024-11-05</date><risdate>2024</risdate><volume>18</volume><issue>44</issue><spage>30896</spage><epage>30909</epage><pages>30896-30909</pages><issn>1936-0851</issn><issn>1936-086X</issn><eissn>1936-086X</eissn><abstract>Intercalation engineering is a promising strategy to promote zinc-ion storage of layered cathodes; however, is impeded by the complex fabrication routes and inert electrochemical behaviors of intercalators. Herein, an organic imidazole intercalation strategy is proposed, where V2O5 and NH4V3O8 (NVO) model materials are adopted to verify the feasibility of the imidazole intercalator in improving the zinc storage capabilities of vanadium-based cathodes. The intercalated imidazole molecules could not only expand interlayer spacing and strengthen structural stability by serving as extra “pillars” but also provide extra coordination sites for zinc storage via the coordination reaction between Zn2+ and the CN group. This gives rise to a dual-mode ion storage mechanism and favorable electrochemical performances. As a result, imidazole-intercalated V2O5 delivers a capacity of 179.9 mAh g–1 after 5000 cycles at 20 A g–1, while the imidazole-intercalated NVO harvests a high capacity output of 170.2 mAh g–1 after 700 cycles at 2 A g–1. This work is anticipated to boost the application potentials of vanadium-based cathodes in aqueous zinc-ion batteries.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39460714</pmid><doi>10.1021/acsnano.4c12849</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4436-6392</orcidid><orcidid>https://orcid.org/0000-0002-9596-0412</orcidid><orcidid>https://orcid.org/0000-0002-9812-3046</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2024-11, Vol.18 (44), p.30896-30909 |
issn | 1936-0851 1936-086X 1936-086X |
language | eng |
recordid | cdi_proquest_miscellaneous_3121064562 |
source | ACS Publications |
title | Realizing Dual-Mode Zinc-Ion Storage of Generic Vanadium-Based Cathodes via Organic Molecule Intercalation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A24%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Realizing%20Dual-Mode%20Zinc-Ion%20Storage%20of%20Generic%20Vanadium-Based%20Cathodes%20via%20Organic%20Molecule%20Intercalation&rft.jtitle=ACS%20nano&rft.au=Tang,%20Hongwei&rft.date=2024-11-05&rft.volume=18&rft.issue=44&rft.spage=30896&rft.epage=30909&rft.pages=30896-30909&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.4c12849&rft_dat=%3Cproquest_cross%3E3121064562%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3121064562&rft_id=info:pmid/39460714&rfr_iscdi=true |