Radiomic and clinical model for predicting atypical ductal hyperplasia upgrades and potentially reduce unnecessary surgical treatments

•Radiomics enhance identification of women with ADH at low risk of cancer upgrade.•Combining clinical and radiomic features provided the best prediction performance.•This model could be useful in changing the management of women with ADH. To identify patients with atypical ductal hyperplasia (ADH) a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of radiology 2024-12, Vol.181, p.111799, Article 111799
Hauptverfasser: Brunetti, Nicole, Campi, Cristina, Biddau, Giorgia, Piana, Michele, Picone, Ilaria, Conti, Benedetta, Cesano, Sara, Starovatskyi, Oleksandr, Bozzano, Silvia, Rescinito, Giuseppe, Tosto, Simona, Garlaschi, Alessandro, Calabrese, Massimo, Stefano Tagliafico, Alberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 111799
container_title European journal of radiology
container_volume 181
creator Brunetti, Nicole
Campi, Cristina
Biddau, Giorgia
Piana, Michele
Picone, Ilaria
Conti, Benedetta
Cesano, Sara
Starovatskyi, Oleksandr
Bozzano, Silvia
Rescinito, Giuseppe
Tosto, Simona
Garlaschi, Alessandro
Calabrese, Massimo
Stefano Tagliafico, Alberto
description •Radiomics enhance identification of women with ADH at low risk of cancer upgrade.•Combining clinical and radiomic features provided the best prediction performance.•This model could be useful in changing the management of women with ADH. To identify patients with atypical ductal hyperplasia (ADH) at low risk of upgrading to carcinoma. This study aims to assess the performance of radiomics combined with clinical factors to predict occult breast cancer among women diagnosed with ADH. This study retrospectively included microcalcification clusters of patients who underwent Mx and VABB with a diagnosis of ADH at a tertiary center from January 2015 to May 2023. Clinical and radiological data (age, cluster size, BI-RADS classification, mammographic density, breast cancer history, residual microcalcifications) were collected. Surgical outcomes were used to determine upgrade. Four logistic regression models were developed to predict the risk of upgrade. The performance was evaluated using the area under the receiver operating characteristic curve (AUC) and performance scores. A total of 143 patients with 153 clusters were included. Twelve radiomic features and six clinical factors were selected for model development. The sample was split into 107 training and 46 test cases. Clinical features achieved an AUC of 0.72 (0.60–0.84), radiomic features an AUC of 0.73 (0.61–0.85). Radiomic features with “cluster size” and “age” improved the AUC to 0.79 (0.67–0.91). The best model, incorporating all data, achieved an AUC of 0.82 (0.71–0.92), a specificity of 0.89 (0.75, 0.97), and NPV of 0.92 (0.78–0.98). This study demonstrates the potential of radiomic as a valuable tool for reducing unnecessary treatments for patient classified as “low risk of ADH upgrade”. Combining radiomic information with clinical data improved the accuracy of risk prediction.
doi_str_mv 10.1016/j.ejrad.2024.111799
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3121059086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0720048X24005151</els_id><sourcerecordid>3121059086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c239t-fcb84851e4e43dc41c8f26595e302fe5849cb8013cf4972584ba85576bef26db3</originalsourceid><addsrcrecordid>eNp9kctqHDEQRUWIiSdOviAQtMymJ5Jamm4tvAjGj4AhYBzITqhL1RMN6kcktWF-wN9tecbO0qtC6Nxbj0vIF87WnPHN990ad9G6tWBCrjnnjdbvyIq3jaiaRjTvyYo1glVMtn9OyceUdowxJbX4QE5rLZWUQq3I4511fho8UDs6CsGPHmygw-Qw0H6KdI7oPGQ_bqnN-_nw6xbIpfzdzxjnYJO3dJm3ZRZMB5t5yjhmb0PY0yJfAOkyjgiYko17mpa4PfjkiDYPBU2fyElvQ8LPL_WM_L66vL-4qW5_Xf-8-HFbgah1rnroWtkqjhJl7UByaHuxUVphzUSPqpW6EIzX0EvdiPLubKtUs-mwcK6rz8i3o-8cp38LpmwGnwBDsCNOSzI1F5wpzdpNQesjCnFKKWJv5uiHMr_hzDwHYHbmEIB5DsAcAyiqry8Nlm5A91_zevECnB8BLGs-eIwmgccRypUjQjZu8m82eAK_75tk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3121059086</pqid></control><display><type>article</type><title>Radiomic and clinical model for predicting atypical ductal hyperplasia upgrades and potentially reduce unnecessary surgical treatments</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Brunetti, Nicole ; Campi, Cristina ; Biddau, Giorgia ; Piana, Michele ; Picone, Ilaria ; Conti, Benedetta ; Cesano, Sara ; Starovatskyi, Oleksandr ; Bozzano, Silvia ; Rescinito, Giuseppe ; Tosto, Simona ; Garlaschi, Alessandro ; Calabrese, Massimo ; Stefano Tagliafico, Alberto</creator><creatorcontrib>Brunetti, Nicole ; Campi, Cristina ; Biddau, Giorgia ; Piana, Michele ; Picone, Ilaria ; Conti, Benedetta ; Cesano, Sara ; Starovatskyi, Oleksandr ; Bozzano, Silvia ; Rescinito, Giuseppe ; Tosto, Simona ; Garlaschi, Alessandro ; Calabrese, Massimo ; Stefano Tagliafico, Alberto</creatorcontrib><description>•Radiomics enhance identification of women with ADH at low risk of cancer upgrade.•Combining clinical and radiomic features provided the best prediction performance.•This model could be useful in changing the management of women with ADH. To identify patients with atypical ductal hyperplasia (ADH) at low risk of upgrading to carcinoma. This study aims to assess the performance of radiomics combined with clinical factors to predict occult breast cancer among women diagnosed with ADH. This study retrospectively included microcalcification clusters of patients who underwent Mx and VABB with a diagnosis of ADH at a tertiary center from January 2015 to May 2023. Clinical and radiological data (age, cluster size, BI-RADS classification, mammographic density, breast cancer history, residual microcalcifications) were collected. Surgical outcomes were used to determine upgrade. Four logistic regression models were developed to predict the risk of upgrade. The performance was evaluated using the area under the receiver operating characteristic curve (AUC) and performance scores. A total of 143 patients with 153 clusters were included. Twelve radiomic features and six clinical factors were selected for model development. The sample was split into 107 training and 46 test cases. Clinical features achieved an AUC of 0.72 (0.60–0.84), radiomic features an AUC of 0.73 (0.61–0.85). Radiomic features with “cluster size” and “age” improved the AUC to 0.79 (0.67–0.91). The best model, incorporating all data, achieved an AUC of 0.82 (0.71–0.92), a specificity of 0.89 (0.75, 0.97), and NPV of 0.92 (0.78–0.98). This study demonstrates the potential of radiomic as a valuable tool for reducing unnecessary treatments for patient classified as “low risk of ADH upgrade”. Combining radiomic information with clinical data improved the accuracy of risk prediction.</description><identifier>ISSN: 0720-048X</identifier><identifier>ISSN: 1872-7727</identifier><identifier>EISSN: 1872-7727</identifier><identifier>DOI: 10.1016/j.ejrad.2024.111799</identifier><identifier>PMID: 39454425</identifier><language>eng</language><publisher>Ireland: Elsevier B.V</publisher><subject>Adult ; Aged ; Atypical Ductal Hyperplasia ; Breast Neoplasm ; Breast Neoplasms - diagnostic imaging ; Breast Neoplasms - pathology ; Carcinoma ; Carcinoma, Intraductal, Noninfiltrating - diagnostic imaging ; Carcinoma, Intraductal, Noninfiltrating - pathology ; Female ; Humans ; Mammography ; Mammography - methods ; Middle Aged ; Predictive Value of Tests ; Radiomics ; Retrospective Studies ; Unnecessary Procedures - statistics &amp; numerical data</subject><ispartof>European journal of radiology, 2024-12, Vol.181, p.111799, Article 111799</ispartof><rights>2024 Elsevier B.V.</rights><rights>Copyright © 2024 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c239t-fcb84851e4e43dc41c8f26595e302fe5849cb8013cf4972584ba85576bef26db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ejrad.2024.111799$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39454425$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brunetti, Nicole</creatorcontrib><creatorcontrib>Campi, Cristina</creatorcontrib><creatorcontrib>Biddau, Giorgia</creatorcontrib><creatorcontrib>Piana, Michele</creatorcontrib><creatorcontrib>Picone, Ilaria</creatorcontrib><creatorcontrib>Conti, Benedetta</creatorcontrib><creatorcontrib>Cesano, Sara</creatorcontrib><creatorcontrib>Starovatskyi, Oleksandr</creatorcontrib><creatorcontrib>Bozzano, Silvia</creatorcontrib><creatorcontrib>Rescinito, Giuseppe</creatorcontrib><creatorcontrib>Tosto, Simona</creatorcontrib><creatorcontrib>Garlaschi, Alessandro</creatorcontrib><creatorcontrib>Calabrese, Massimo</creatorcontrib><creatorcontrib>Stefano Tagliafico, Alberto</creatorcontrib><title>Radiomic and clinical model for predicting atypical ductal hyperplasia upgrades and potentially reduce unnecessary surgical treatments</title><title>European journal of radiology</title><addtitle>Eur J Radiol</addtitle><description>•Radiomics enhance identification of women with ADH at low risk of cancer upgrade.•Combining clinical and radiomic features provided the best prediction performance.•This model could be useful in changing the management of women with ADH. To identify patients with atypical ductal hyperplasia (ADH) at low risk of upgrading to carcinoma. This study aims to assess the performance of radiomics combined with clinical factors to predict occult breast cancer among women diagnosed with ADH. This study retrospectively included microcalcification clusters of patients who underwent Mx and VABB with a diagnosis of ADH at a tertiary center from January 2015 to May 2023. Clinical and radiological data (age, cluster size, BI-RADS classification, mammographic density, breast cancer history, residual microcalcifications) were collected. Surgical outcomes were used to determine upgrade. Four logistic regression models were developed to predict the risk of upgrade. The performance was evaluated using the area under the receiver operating characteristic curve (AUC) and performance scores. A total of 143 patients with 153 clusters were included. Twelve radiomic features and six clinical factors were selected for model development. The sample was split into 107 training and 46 test cases. Clinical features achieved an AUC of 0.72 (0.60–0.84), radiomic features an AUC of 0.73 (0.61–0.85). Radiomic features with “cluster size” and “age” improved the AUC to 0.79 (0.67–0.91). The best model, incorporating all data, achieved an AUC of 0.82 (0.71–0.92), a specificity of 0.89 (0.75, 0.97), and NPV of 0.92 (0.78–0.98). This study demonstrates the potential of radiomic as a valuable tool for reducing unnecessary treatments for patient classified as “low risk of ADH upgrade”. Combining radiomic information with clinical data improved the accuracy of risk prediction.</description><subject>Adult</subject><subject>Aged</subject><subject>Atypical Ductal Hyperplasia</subject><subject>Breast Neoplasm</subject><subject>Breast Neoplasms - diagnostic imaging</subject><subject>Breast Neoplasms - pathology</subject><subject>Carcinoma</subject><subject>Carcinoma, Intraductal, Noninfiltrating - diagnostic imaging</subject><subject>Carcinoma, Intraductal, Noninfiltrating - pathology</subject><subject>Female</subject><subject>Humans</subject><subject>Mammography</subject><subject>Mammography - methods</subject><subject>Middle Aged</subject><subject>Predictive Value of Tests</subject><subject>Radiomics</subject><subject>Retrospective Studies</subject><subject>Unnecessary Procedures - statistics &amp; numerical data</subject><issn>0720-048X</issn><issn>1872-7727</issn><issn>1872-7727</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kctqHDEQRUWIiSdOviAQtMymJ5Jamm4tvAjGj4AhYBzITqhL1RMN6kcktWF-wN9tecbO0qtC6Nxbj0vIF87WnPHN990ad9G6tWBCrjnnjdbvyIq3jaiaRjTvyYo1glVMtn9OyceUdowxJbX4QE5rLZWUQq3I4511fho8UDs6CsGPHmygw-Qw0H6KdI7oPGQ_bqnN-_nw6xbIpfzdzxjnYJO3dJm3ZRZMB5t5yjhmb0PY0yJfAOkyjgiYko17mpa4PfjkiDYPBU2fyElvQ8LPL_WM_L66vL-4qW5_Xf-8-HFbgah1rnroWtkqjhJl7UByaHuxUVphzUSPqpW6EIzX0EvdiPLubKtUs-mwcK6rz8i3o-8cp38LpmwGnwBDsCNOSzI1F5wpzdpNQesjCnFKKWJv5uiHMr_hzDwHYHbmEIB5DsAcAyiqry8Nlm5A91_zevECnB8BLGs-eIwmgccRypUjQjZu8m82eAK_75tk</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Brunetti, Nicole</creator><creator>Campi, Cristina</creator><creator>Biddau, Giorgia</creator><creator>Piana, Michele</creator><creator>Picone, Ilaria</creator><creator>Conti, Benedetta</creator><creator>Cesano, Sara</creator><creator>Starovatskyi, Oleksandr</creator><creator>Bozzano, Silvia</creator><creator>Rescinito, Giuseppe</creator><creator>Tosto, Simona</creator><creator>Garlaschi, Alessandro</creator><creator>Calabrese, Massimo</creator><creator>Stefano Tagliafico, Alberto</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202412</creationdate><title>Radiomic and clinical model for predicting atypical ductal hyperplasia upgrades and potentially reduce unnecessary surgical treatments</title><author>Brunetti, Nicole ; Campi, Cristina ; Biddau, Giorgia ; Piana, Michele ; Picone, Ilaria ; Conti, Benedetta ; Cesano, Sara ; Starovatskyi, Oleksandr ; Bozzano, Silvia ; Rescinito, Giuseppe ; Tosto, Simona ; Garlaschi, Alessandro ; Calabrese, Massimo ; Stefano Tagliafico, Alberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c239t-fcb84851e4e43dc41c8f26595e302fe5849cb8013cf4972584ba85576bef26db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Atypical Ductal Hyperplasia</topic><topic>Breast Neoplasm</topic><topic>Breast Neoplasms - diagnostic imaging</topic><topic>Breast Neoplasms - pathology</topic><topic>Carcinoma</topic><topic>Carcinoma, Intraductal, Noninfiltrating - diagnostic imaging</topic><topic>Carcinoma, Intraductal, Noninfiltrating - pathology</topic><topic>Female</topic><topic>Humans</topic><topic>Mammography</topic><topic>Mammography - methods</topic><topic>Middle Aged</topic><topic>Predictive Value of Tests</topic><topic>Radiomics</topic><topic>Retrospective Studies</topic><topic>Unnecessary Procedures - statistics &amp; numerical data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brunetti, Nicole</creatorcontrib><creatorcontrib>Campi, Cristina</creatorcontrib><creatorcontrib>Biddau, Giorgia</creatorcontrib><creatorcontrib>Piana, Michele</creatorcontrib><creatorcontrib>Picone, Ilaria</creatorcontrib><creatorcontrib>Conti, Benedetta</creatorcontrib><creatorcontrib>Cesano, Sara</creatorcontrib><creatorcontrib>Starovatskyi, Oleksandr</creatorcontrib><creatorcontrib>Bozzano, Silvia</creatorcontrib><creatorcontrib>Rescinito, Giuseppe</creatorcontrib><creatorcontrib>Tosto, Simona</creatorcontrib><creatorcontrib>Garlaschi, Alessandro</creatorcontrib><creatorcontrib>Calabrese, Massimo</creatorcontrib><creatorcontrib>Stefano Tagliafico, Alberto</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>European journal of radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brunetti, Nicole</au><au>Campi, Cristina</au><au>Biddau, Giorgia</au><au>Piana, Michele</au><au>Picone, Ilaria</au><au>Conti, Benedetta</au><au>Cesano, Sara</au><au>Starovatskyi, Oleksandr</au><au>Bozzano, Silvia</au><au>Rescinito, Giuseppe</au><au>Tosto, Simona</au><au>Garlaschi, Alessandro</au><au>Calabrese, Massimo</au><au>Stefano Tagliafico, Alberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radiomic and clinical model for predicting atypical ductal hyperplasia upgrades and potentially reduce unnecessary surgical treatments</atitle><jtitle>European journal of radiology</jtitle><addtitle>Eur J Radiol</addtitle><date>2024-12</date><risdate>2024</risdate><volume>181</volume><spage>111799</spage><pages>111799-</pages><artnum>111799</artnum><issn>0720-048X</issn><issn>1872-7727</issn><eissn>1872-7727</eissn><abstract>•Radiomics enhance identification of women with ADH at low risk of cancer upgrade.•Combining clinical and radiomic features provided the best prediction performance.•This model could be useful in changing the management of women with ADH. To identify patients with atypical ductal hyperplasia (ADH) at low risk of upgrading to carcinoma. This study aims to assess the performance of radiomics combined with clinical factors to predict occult breast cancer among women diagnosed with ADH. This study retrospectively included microcalcification clusters of patients who underwent Mx and VABB with a diagnosis of ADH at a tertiary center from January 2015 to May 2023. Clinical and radiological data (age, cluster size, BI-RADS classification, mammographic density, breast cancer history, residual microcalcifications) were collected. Surgical outcomes were used to determine upgrade. Four logistic regression models were developed to predict the risk of upgrade. The performance was evaluated using the area under the receiver operating characteristic curve (AUC) and performance scores. A total of 143 patients with 153 clusters were included. Twelve radiomic features and six clinical factors were selected for model development. The sample was split into 107 training and 46 test cases. Clinical features achieved an AUC of 0.72 (0.60–0.84), radiomic features an AUC of 0.73 (0.61–0.85). Radiomic features with “cluster size” and “age” improved the AUC to 0.79 (0.67–0.91). The best model, incorporating all data, achieved an AUC of 0.82 (0.71–0.92), a specificity of 0.89 (0.75, 0.97), and NPV of 0.92 (0.78–0.98). This study demonstrates the potential of radiomic as a valuable tool for reducing unnecessary treatments for patient classified as “low risk of ADH upgrade”. Combining radiomic information with clinical data improved the accuracy of risk prediction.</abstract><cop>Ireland</cop><pub>Elsevier B.V</pub><pmid>39454425</pmid><doi>10.1016/j.ejrad.2024.111799</doi></addata></record>
fulltext fulltext
identifier ISSN: 0720-048X
ispartof European journal of radiology, 2024-12, Vol.181, p.111799, Article 111799
issn 0720-048X
1872-7727
1872-7727
language eng
recordid cdi_proquest_miscellaneous_3121059086
source MEDLINE; Elsevier ScienceDirect Journals
subjects Adult
Aged
Atypical Ductal Hyperplasia
Breast Neoplasm
Breast Neoplasms - diagnostic imaging
Breast Neoplasms - pathology
Carcinoma
Carcinoma, Intraductal, Noninfiltrating - diagnostic imaging
Carcinoma, Intraductal, Noninfiltrating - pathology
Female
Humans
Mammography
Mammography - methods
Middle Aged
Predictive Value of Tests
Radiomics
Retrospective Studies
Unnecessary Procedures - statistics & numerical data
title Radiomic and clinical model for predicting atypical ductal hyperplasia upgrades and potentially reduce unnecessary surgical treatments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T22%3A55%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radiomic%20and%20clinical%20model%20for%20predicting%20atypical%20ductal%20hyperplasia%20upgrades%20and%20potentially%20reduce%20unnecessary%20surgical%20treatments&rft.jtitle=European%20journal%20of%20radiology&rft.au=Brunetti,%20Nicole&rft.date=2024-12&rft.volume=181&rft.spage=111799&rft.pages=111799-&rft.artnum=111799&rft.issn=0720-048X&rft.eissn=1872-7727&rft_id=info:doi/10.1016/j.ejrad.2024.111799&rft_dat=%3Cproquest_cross%3E3121059086%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3121059086&rft_id=info:pmid/39454425&rft_els_id=S0720048X24005151&rfr_iscdi=true