Differential stiffness between brain vasculature and parenchyma promotes metastatic infiltration through vessel co-option

In brain metastasis, cancer cells remain in close contact with the existing vasculature and can use vessels as migratory paths—a process known as vessel co-option. However, the mechanisms regulating this form of migration are poorly understood. Here we use ex vivo brain slices and an organotypic in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature cell biology 2024-12, Vol.26 (12), p.2144-2153
Hauptverfasser: Uroz, Marina, Stoddard, Amy E., Sutherland, Bryan P., Courbot, Olivia, Oria, Roger, Li, Linqing, Ravasio, Cara R., Ngo, Mai T., Yang, Jinling, Tefft, Juliann B., Eyckmans, Jeroen, Han, Xue, Elosegui-Artola, Alberto, Weaver, Valerie M., Chen, Christopher S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2153
container_issue 12
container_start_page 2144
container_title Nature cell biology
container_volume 26
creator Uroz, Marina
Stoddard, Amy E.
Sutherland, Bryan P.
Courbot, Olivia
Oria, Roger
Li, Linqing
Ravasio, Cara R.
Ngo, Mai T.
Yang, Jinling
Tefft, Juliann B.
Eyckmans, Jeroen
Han, Xue
Elosegui-Artola, Alberto
Weaver, Valerie M.
Chen, Christopher S.
description In brain metastasis, cancer cells remain in close contact with the existing vasculature and can use vessels as migratory paths—a process known as vessel co-option. However, the mechanisms regulating this form of migration are poorly understood. Here we use ex vivo brain slices and an organotypic in vitro model for vessel co-option to show that cancer cell invasion along brain vasculature is driven by the difference in stiffness between vessels and the brain parenchyma. Imaging analysis indicated that cells move along the basal surface of vessels by adhering to the basement membrane extracellular matrix. We further show that vessel co-option is enhanced by both the stiffness of brain vasculature, which reinforces focal adhesions through a talin-dependent mechanism, and the softness of the surrounding environment that permits cellular movement. Our work reveals a mechanosensing mechanism that guides cell migration in response to the tissue’s intrinsic mechanical heterogeneity, with implications in cancer invasion and metastasis. Uroz et al. report that the distinct mechanical properties of brain vasculature versus parenchyma drive cancer cell migration through a talin-dependent mechanism, enabling vessel co-option and metastatic invasion in the brain.
doi_str_mv 10.1038/s41556-024-01532-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3120597097</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3142382299</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-b27d853c1c25e08dad5e44ee005999a73caf00140a1c8715670ee1705440eafd3</originalsourceid><addsrcrecordid>eNp9kctuFDEQRS0EIiHwAyyQJTZsDH6220sUHkGKxIasrRp3daajbnuw3Ynm7-PJBJBYZOUq1bnXVbqEvBX8o-Cq_1S0MKZjXGrGhVGSdc_IqdC2Y7qz7vmh7gyzyskT8qqUG86F1ty-JCfKad33XJ6S_ZdpHDFjrBPMtNTWRSyFbrDeIUa6yTBFegslrDPUNSOFONAdNEXY7hegu5yWVLHQBSuUCnUKdIrjNNfc6hRp3ea0Xm_pbbPFmYbE0u4weE1ejDAXfPP4npGrb19_nV-wy5_ff5x_vmRBmq6yjbRDb1QQrUXeDzAY1BqRc-OcA6sCjIfDOIjQW2E6yxGF5aadijAO6ox8OPq2TX-vWKpfphJwniFiWotXQjYry51t6Pv_0Ju05ti2a5SWqpfSuUbJIxVyKiXj6Hd5WiDvveD-EIw_BuNbMP4hGN810btH63Wz4PBX8ieJBqgjUNooXmP-9_cTtveH7Zs9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3142382299</pqid></control><display><type>article</type><title>Differential stiffness between brain vasculature and parenchyma promotes metastatic infiltration through vessel co-option</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Uroz, Marina ; Stoddard, Amy E. ; Sutherland, Bryan P. ; Courbot, Olivia ; Oria, Roger ; Li, Linqing ; Ravasio, Cara R. ; Ngo, Mai T. ; Yang, Jinling ; Tefft, Juliann B. ; Eyckmans, Jeroen ; Han, Xue ; Elosegui-Artola, Alberto ; Weaver, Valerie M. ; Chen, Christopher S.</creator><creatorcontrib>Uroz, Marina ; Stoddard, Amy E. ; Sutherland, Bryan P. ; Courbot, Olivia ; Oria, Roger ; Li, Linqing ; Ravasio, Cara R. ; Ngo, Mai T. ; Yang, Jinling ; Tefft, Juliann B. ; Eyckmans, Jeroen ; Han, Xue ; Elosegui-Artola, Alberto ; Weaver, Valerie M. ; Chen, Christopher S.</creatorcontrib><description>In brain metastasis, cancer cells remain in close contact with the existing vasculature and can use vessels as migratory paths—a process known as vessel co-option. However, the mechanisms regulating this form of migration are poorly understood. Here we use ex vivo brain slices and an organotypic in vitro model for vessel co-option to show that cancer cell invasion along brain vasculature is driven by the difference in stiffness between vessels and the brain parenchyma. Imaging analysis indicated that cells move along the basal surface of vessels by adhering to the basement membrane extracellular matrix. We further show that vessel co-option is enhanced by both the stiffness of brain vasculature, which reinforces focal adhesions through a talin-dependent mechanism, and the softness of the surrounding environment that permits cellular movement. Our work reveals a mechanosensing mechanism that guides cell migration in response to the tissue’s intrinsic mechanical heterogeneity, with implications in cancer invasion and metastasis. Uroz et al. report that the distinct mechanical properties of brain vasculature versus parenchyma drive cancer cell migration through a talin-dependent mechanism, enabling vessel co-option and metastatic invasion in the brain.</description><identifier>ISSN: 1465-7392</identifier><identifier>ISSN: 1476-4679</identifier><identifier>EISSN: 1476-4679</identifier><identifier>DOI: 10.1038/s41556-024-01532-6</identifier><identifier>PMID: 39448802</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/57/343/1361 ; 631/67/322 ; 631/80/79/2066 ; 631/80/84/2336 ; Animals ; Basement Membrane - metabolism ; Basement Membrane - pathology ; Basement membranes ; Biomedical and Life Sciences ; Brain ; Brain - blood supply ; Brain - pathology ; Brain Neoplasms - blood supply ; Brain Neoplasms - pathology ; Brain Neoplasms - secondary ; Brain slice preparation ; Cancer ; Cancer Research ; Cell Adhesion ; Cell adhesion &amp; migration ; Cell Biology ; Cell Line, Tumor ; Cell migration ; Cell Movement ; Developmental Biology ; Extracellular matrix ; Extracellular Matrix - metabolism ; Extracellular Matrix - pathology ; Female ; Focal Adhesions - metabolism ; Focal Adhesions - pathology ; Heterogeneity ; Humans ; Life Sciences ; Mechanical properties ; Mechanotransduction, Cellular ; Metastases ; Metastasis ; Mice ; Neoplasm Invasiveness ; Neoplasm Metastasis ; Neovascularization, Pathologic - pathology ; Neuroimaging ; Parenchyma ; Parenchymal Tissue - pathology ; Softness ; Stem Cells ; Stiffness ; Talin ; Talin - genetics ; Talin - metabolism ; Vessels</subject><ispartof>Nature cell biology, 2024-12, Vol.26 (12), p.2144-2153</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>Copyright Nature Publishing Group Dec 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c256t-b27d853c1c25e08dad5e44ee005999a73caf00140a1c8715670ee1705440eafd3</cites><orcidid>0000-0003-4363-3249 ; 0000-0003-4786-6752 ; 0000-0003-4124-8048 ; 0000-0003-1475-8149 ; 0000-0003-0644-3294 ; 0000-0002-5974-9775 ; 0000-0002-8826-665X ; 0000-0003-2445-8449</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41556-024-01532-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41556-024-01532-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39448802$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Uroz, Marina</creatorcontrib><creatorcontrib>Stoddard, Amy E.</creatorcontrib><creatorcontrib>Sutherland, Bryan P.</creatorcontrib><creatorcontrib>Courbot, Olivia</creatorcontrib><creatorcontrib>Oria, Roger</creatorcontrib><creatorcontrib>Li, Linqing</creatorcontrib><creatorcontrib>Ravasio, Cara R.</creatorcontrib><creatorcontrib>Ngo, Mai T.</creatorcontrib><creatorcontrib>Yang, Jinling</creatorcontrib><creatorcontrib>Tefft, Juliann B.</creatorcontrib><creatorcontrib>Eyckmans, Jeroen</creatorcontrib><creatorcontrib>Han, Xue</creatorcontrib><creatorcontrib>Elosegui-Artola, Alberto</creatorcontrib><creatorcontrib>Weaver, Valerie M.</creatorcontrib><creatorcontrib>Chen, Christopher S.</creatorcontrib><title>Differential stiffness between brain vasculature and parenchyma promotes metastatic infiltration through vessel co-option</title><title>Nature cell biology</title><addtitle>Nat Cell Biol</addtitle><addtitle>Nat Cell Biol</addtitle><description>In brain metastasis, cancer cells remain in close contact with the existing vasculature and can use vessels as migratory paths—a process known as vessel co-option. However, the mechanisms regulating this form of migration are poorly understood. Here we use ex vivo brain slices and an organotypic in vitro model for vessel co-option to show that cancer cell invasion along brain vasculature is driven by the difference in stiffness between vessels and the brain parenchyma. Imaging analysis indicated that cells move along the basal surface of vessels by adhering to the basement membrane extracellular matrix. We further show that vessel co-option is enhanced by both the stiffness of brain vasculature, which reinforces focal adhesions through a talin-dependent mechanism, and the softness of the surrounding environment that permits cellular movement. Our work reveals a mechanosensing mechanism that guides cell migration in response to the tissue’s intrinsic mechanical heterogeneity, with implications in cancer invasion and metastasis. Uroz et al. report that the distinct mechanical properties of brain vasculature versus parenchyma drive cancer cell migration through a talin-dependent mechanism, enabling vessel co-option and metastatic invasion in the brain.</description><subject>631/57/343/1361</subject><subject>631/67/322</subject><subject>631/80/79/2066</subject><subject>631/80/84/2336</subject><subject>Animals</subject><subject>Basement Membrane - metabolism</subject><subject>Basement Membrane - pathology</subject><subject>Basement membranes</subject><subject>Biomedical and Life Sciences</subject><subject>Brain</subject><subject>Brain - blood supply</subject><subject>Brain - pathology</subject><subject>Brain Neoplasms - blood supply</subject><subject>Brain Neoplasms - pathology</subject><subject>Brain Neoplasms - secondary</subject><subject>Brain slice preparation</subject><subject>Cancer</subject><subject>Cancer Research</subject><subject>Cell Adhesion</subject><subject>Cell adhesion &amp; migration</subject><subject>Cell Biology</subject><subject>Cell Line, Tumor</subject><subject>Cell migration</subject><subject>Cell Movement</subject><subject>Developmental Biology</subject><subject>Extracellular matrix</subject><subject>Extracellular Matrix - metabolism</subject><subject>Extracellular Matrix - pathology</subject><subject>Female</subject><subject>Focal Adhesions - metabolism</subject><subject>Focal Adhesions - pathology</subject><subject>Heterogeneity</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Mechanical properties</subject><subject>Mechanotransduction, Cellular</subject><subject>Metastases</subject><subject>Metastasis</subject><subject>Mice</subject><subject>Neoplasm Invasiveness</subject><subject>Neoplasm Metastasis</subject><subject>Neovascularization, Pathologic - pathology</subject><subject>Neuroimaging</subject><subject>Parenchyma</subject><subject>Parenchymal Tissue - pathology</subject><subject>Softness</subject><subject>Stem Cells</subject><subject>Stiffness</subject><subject>Talin</subject><subject>Talin - genetics</subject><subject>Talin - metabolism</subject><subject>Vessels</subject><issn>1465-7392</issn><issn>1476-4679</issn><issn>1476-4679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kctuFDEQRS0EIiHwAyyQJTZsDH6220sUHkGKxIasrRp3daajbnuw3Ynm7-PJBJBYZOUq1bnXVbqEvBX8o-Cq_1S0MKZjXGrGhVGSdc_IqdC2Y7qz7vmh7gyzyskT8qqUG86F1ty-JCfKad33XJ6S_ZdpHDFjrBPMtNTWRSyFbrDeIUa6yTBFegslrDPUNSOFONAdNEXY7hegu5yWVLHQBSuUCnUKdIrjNNfc6hRp3ea0Xm_pbbPFmYbE0u4weE1ejDAXfPP4npGrb19_nV-wy5_ff5x_vmRBmq6yjbRDb1QQrUXeDzAY1BqRc-OcA6sCjIfDOIjQW2E6yxGF5aadijAO6ox8OPq2TX-vWKpfphJwniFiWotXQjYry51t6Pv_0Ju05ti2a5SWqpfSuUbJIxVyKiXj6Hd5WiDvveD-EIw_BuNbMP4hGN810btH63Wz4PBX8ieJBqgjUNooXmP-9_cTtveH7Zs9</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Uroz, Marina</creator><creator>Stoddard, Amy E.</creator><creator>Sutherland, Bryan P.</creator><creator>Courbot, Olivia</creator><creator>Oria, Roger</creator><creator>Li, Linqing</creator><creator>Ravasio, Cara R.</creator><creator>Ngo, Mai T.</creator><creator>Yang, Jinling</creator><creator>Tefft, Juliann B.</creator><creator>Eyckmans, Jeroen</creator><creator>Han, Xue</creator><creator>Elosegui-Artola, Alberto</creator><creator>Weaver, Valerie M.</creator><creator>Chen, Christopher S.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4363-3249</orcidid><orcidid>https://orcid.org/0000-0003-4786-6752</orcidid><orcidid>https://orcid.org/0000-0003-4124-8048</orcidid><orcidid>https://orcid.org/0000-0003-1475-8149</orcidid><orcidid>https://orcid.org/0000-0003-0644-3294</orcidid><orcidid>https://orcid.org/0000-0002-5974-9775</orcidid><orcidid>https://orcid.org/0000-0002-8826-665X</orcidid><orcidid>https://orcid.org/0000-0003-2445-8449</orcidid></search><sort><creationdate>202412</creationdate><title>Differential stiffness between brain vasculature and parenchyma promotes metastatic infiltration through vessel co-option</title><author>Uroz, Marina ; Stoddard, Amy E. ; Sutherland, Bryan P. ; Courbot, Olivia ; Oria, Roger ; Li, Linqing ; Ravasio, Cara R. ; Ngo, Mai T. ; Yang, Jinling ; Tefft, Juliann B. ; Eyckmans, Jeroen ; Han, Xue ; Elosegui-Artola, Alberto ; Weaver, Valerie M. ; Chen, Christopher S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-b27d853c1c25e08dad5e44ee005999a73caf00140a1c8715670ee1705440eafd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>631/57/343/1361</topic><topic>631/67/322</topic><topic>631/80/79/2066</topic><topic>631/80/84/2336</topic><topic>Animals</topic><topic>Basement Membrane - metabolism</topic><topic>Basement Membrane - pathology</topic><topic>Basement membranes</topic><topic>Biomedical and Life Sciences</topic><topic>Brain</topic><topic>Brain - blood supply</topic><topic>Brain - pathology</topic><topic>Brain Neoplasms - blood supply</topic><topic>Brain Neoplasms - pathology</topic><topic>Brain Neoplasms - secondary</topic><topic>Brain slice preparation</topic><topic>Cancer</topic><topic>Cancer Research</topic><topic>Cell Adhesion</topic><topic>Cell adhesion &amp; migration</topic><topic>Cell Biology</topic><topic>Cell Line, Tumor</topic><topic>Cell migration</topic><topic>Cell Movement</topic><topic>Developmental Biology</topic><topic>Extracellular matrix</topic><topic>Extracellular Matrix - metabolism</topic><topic>Extracellular Matrix - pathology</topic><topic>Female</topic><topic>Focal Adhesions - metabolism</topic><topic>Focal Adhesions - pathology</topic><topic>Heterogeneity</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Mechanical properties</topic><topic>Mechanotransduction, Cellular</topic><topic>Metastases</topic><topic>Metastasis</topic><topic>Mice</topic><topic>Neoplasm Invasiveness</topic><topic>Neoplasm Metastasis</topic><topic>Neovascularization, Pathologic - pathology</topic><topic>Neuroimaging</topic><topic>Parenchyma</topic><topic>Parenchymal Tissue - pathology</topic><topic>Softness</topic><topic>Stem Cells</topic><topic>Stiffness</topic><topic>Talin</topic><topic>Talin - genetics</topic><topic>Talin - metabolism</topic><topic>Vessels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uroz, Marina</creatorcontrib><creatorcontrib>Stoddard, Amy E.</creatorcontrib><creatorcontrib>Sutherland, Bryan P.</creatorcontrib><creatorcontrib>Courbot, Olivia</creatorcontrib><creatorcontrib>Oria, Roger</creatorcontrib><creatorcontrib>Li, Linqing</creatorcontrib><creatorcontrib>Ravasio, Cara R.</creatorcontrib><creatorcontrib>Ngo, Mai T.</creatorcontrib><creatorcontrib>Yang, Jinling</creatorcontrib><creatorcontrib>Tefft, Juliann B.</creatorcontrib><creatorcontrib>Eyckmans, Jeroen</creatorcontrib><creatorcontrib>Han, Xue</creatorcontrib><creatorcontrib>Elosegui-Artola, Alberto</creatorcontrib><creatorcontrib>Weaver, Valerie M.</creatorcontrib><creatorcontrib>Chen, Christopher S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Uroz, Marina</au><au>Stoddard, Amy E.</au><au>Sutherland, Bryan P.</au><au>Courbot, Olivia</au><au>Oria, Roger</au><au>Li, Linqing</au><au>Ravasio, Cara R.</au><au>Ngo, Mai T.</au><au>Yang, Jinling</au><au>Tefft, Juliann B.</au><au>Eyckmans, Jeroen</au><au>Han, Xue</au><au>Elosegui-Artola, Alberto</au><au>Weaver, Valerie M.</au><au>Chen, Christopher S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differential stiffness between brain vasculature and parenchyma promotes metastatic infiltration through vessel co-option</atitle><jtitle>Nature cell biology</jtitle><stitle>Nat Cell Biol</stitle><addtitle>Nat Cell Biol</addtitle><date>2024-12</date><risdate>2024</risdate><volume>26</volume><issue>12</issue><spage>2144</spage><epage>2153</epage><pages>2144-2153</pages><issn>1465-7392</issn><issn>1476-4679</issn><eissn>1476-4679</eissn><abstract>In brain metastasis, cancer cells remain in close contact with the existing vasculature and can use vessels as migratory paths—a process known as vessel co-option. However, the mechanisms regulating this form of migration are poorly understood. Here we use ex vivo brain slices and an organotypic in vitro model for vessel co-option to show that cancer cell invasion along brain vasculature is driven by the difference in stiffness between vessels and the brain parenchyma. Imaging analysis indicated that cells move along the basal surface of vessels by adhering to the basement membrane extracellular matrix. We further show that vessel co-option is enhanced by both the stiffness of brain vasculature, which reinforces focal adhesions through a talin-dependent mechanism, and the softness of the surrounding environment that permits cellular movement. Our work reveals a mechanosensing mechanism that guides cell migration in response to the tissue’s intrinsic mechanical heterogeneity, with implications in cancer invasion and metastasis. Uroz et al. report that the distinct mechanical properties of brain vasculature versus parenchyma drive cancer cell migration through a talin-dependent mechanism, enabling vessel co-option and metastatic invasion in the brain.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39448802</pmid><doi>10.1038/s41556-024-01532-6</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4363-3249</orcidid><orcidid>https://orcid.org/0000-0003-4786-6752</orcidid><orcidid>https://orcid.org/0000-0003-4124-8048</orcidid><orcidid>https://orcid.org/0000-0003-1475-8149</orcidid><orcidid>https://orcid.org/0000-0003-0644-3294</orcidid><orcidid>https://orcid.org/0000-0002-5974-9775</orcidid><orcidid>https://orcid.org/0000-0002-8826-665X</orcidid><orcidid>https://orcid.org/0000-0003-2445-8449</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1465-7392
ispartof Nature cell biology, 2024-12, Vol.26 (12), p.2144-2153
issn 1465-7392
1476-4679
1476-4679
language eng
recordid cdi_proquest_miscellaneous_3120597097
source MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 631/57/343/1361
631/67/322
631/80/79/2066
631/80/84/2336
Animals
Basement Membrane - metabolism
Basement Membrane - pathology
Basement membranes
Biomedical and Life Sciences
Brain
Brain - blood supply
Brain - pathology
Brain Neoplasms - blood supply
Brain Neoplasms - pathology
Brain Neoplasms - secondary
Brain slice preparation
Cancer
Cancer Research
Cell Adhesion
Cell adhesion & migration
Cell Biology
Cell Line, Tumor
Cell migration
Cell Movement
Developmental Biology
Extracellular matrix
Extracellular Matrix - metabolism
Extracellular Matrix - pathology
Female
Focal Adhesions - metabolism
Focal Adhesions - pathology
Heterogeneity
Humans
Life Sciences
Mechanical properties
Mechanotransduction, Cellular
Metastases
Metastasis
Mice
Neoplasm Invasiveness
Neoplasm Metastasis
Neovascularization, Pathologic - pathology
Neuroimaging
Parenchyma
Parenchymal Tissue - pathology
Softness
Stem Cells
Stiffness
Talin
Talin - genetics
Talin - metabolism
Vessels
title Differential stiffness between brain vasculature and parenchyma promotes metastatic infiltration through vessel co-option
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T14%3A02%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differential%20stiffness%20between%20brain%20vasculature%20and%20parenchyma%20promotes%20metastatic%20infiltration%20through%20vessel%20co-option&rft.jtitle=Nature%20cell%20biology&rft.au=Uroz,%20Marina&rft.date=2024-12&rft.volume=26&rft.issue=12&rft.spage=2144&rft.epage=2153&rft.pages=2144-2153&rft.issn=1465-7392&rft.eissn=1476-4679&rft_id=info:doi/10.1038/s41556-024-01532-6&rft_dat=%3Cproquest_cross%3E3142382299%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3142382299&rft_id=info:pmid/39448802&rfr_iscdi=true