Correlating Catalyst Growth with Liquid Water Distribution in Polymer Electrolyte Fuel Cells

This study investigates the impact of liquid water distribution in a polymer electrolyte fuel cell (PEFC) on the spatially heterogeneous platinum (Pt) catalyst degradation. The membrane electrode assemblies (MEAs) are aged using accelerated stress tests (ASTs) in varied cathode gas environments (N2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-12, Vol.20 (52), p.e2404023-n/a
Hauptverfasser: Sharma, Preetam, Aaron, Douglas, Boillat, Pierre, Cheng, Lei, Johnston, Christina, Mench, Matthew M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 52
container_start_page e2404023
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 20
creator Sharma, Preetam
Aaron, Douglas
Boillat, Pierre
Cheng, Lei
Johnston, Christina
Mench, Matthew M.
description This study investigates the impact of liquid water distribution in a polymer electrolyte fuel cell (PEFC) on the spatially heterogeneous platinum (Pt) catalyst degradation. The membrane electrode assemblies (MEAs) are aged using accelerated stress tests (ASTs) in varied cathode gas environments (N2 and air) to instigate Pt catalyst degradation. The study employs high‐resolution neutron imaging and synchrotron micro‐X‐ray diffraction (micro‐XRD) to map liquid water distribution and Pt particle size, respectively. Neutron radiographs reveal liquid water accumulation primarily within the diffusion media, especially under flow field lands, due to thermal resistance differences between channels and lands. Aged MEAs exhibit increased water retention, likely due to increased hydrophilicity of the diffusion media with aging. Synchrotron micro‐XRD maps unveil significant heterogeneity in Pt particle size distribution in the aged MEAs, correlated with preferential liquid water accumulation under flow field lands. This study highlights the critical role of flow field design and water distribution in catalyst degradation, underscoring the need for innovative strategies to enhance fuel cell durability and performance. This study examines how liquid water distribution in polymer electrolyte fuel cells impacts catalyst degradation. High‐resolution neutron imaging and synchrotron micro‐X‐ray diffraction quantify the liquid water distribution and platinum (Pt) catalyst growth, respectively. The results show that water accumulates under flow field lands, exacerbating Pt catalyst growth, and emphasize the role of flow field design in fuel cell durability.
doi_str_mv 10.1002/smll.202404023
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3120596288</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3149476576</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2583-bea2d082c3fb02da0b5fedf031340e8f7f68f0a938fac3b7bcea99f9bf34738f3</originalsourceid><addsrcrecordid>eNqFkM1LwzAYxoMobn5cPUrAi5fONEk_cpS6TaGioOJFKGmbaEbabknK6H9vxuYEL17evHn45eHJA8BFiCYhQvjGNlpPMMIUUYTJARiHcUiCOMXscL-HaAROrF0gREJMk2MwIoxSFsVkDD6yzhihuVPtJ8y443qwDs5Nt3ZfcK38yNWqVzV8504YeKesM6rsnepaqFr43Omh8fpUi8oZf3ECznqhYSa0tmfgSHJtxfnuPAVvs-lrdh_kT_OH7DYPKhylJCgFxzVKcUVkiXDNURlJUUufllAkUpnIOJWIM5JKXpEyKSvBGZOslIQmXiSn4HrruzTdqhfWFY2ylU_AW9H1tvDfRhGLcZp69OoPuuh60_p0nqKMJnGUxJ6abKnKdNYaIYulUQ03QxGiYtN7sem92PfuH1zubPuyEfUe_ynaA2wLrJUWwz92xctjnv-afwM50JBn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149476576</pqid></control><display><type>article</type><title>Correlating Catalyst Growth with Liquid Water Distribution in Polymer Electrolyte Fuel Cells</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Sharma, Preetam ; Aaron, Douglas ; Boillat, Pierre ; Cheng, Lei ; Johnston, Christina ; Mench, Matthew M.</creator><creatorcontrib>Sharma, Preetam ; Aaron, Douglas ; Boillat, Pierre ; Cheng, Lei ; Johnston, Christina ; Mench, Matthew M.</creatorcontrib><description>This study investigates the impact of liquid water distribution in a polymer electrolyte fuel cell (PEFC) on the spatially heterogeneous platinum (Pt) catalyst degradation. The membrane electrode assemblies (MEAs) are aged using accelerated stress tests (ASTs) in varied cathode gas environments (N2 and air) to instigate Pt catalyst degradation. The study employs high‐resolution neutron imaging and synchrotron micro‐X‐ray diffraction (micro‐XRD) to map liquid water distribution and Pt particle size, respectively. Neutron radiographs reveal liquid water accumulation primarily within the diffusion media, especially under flow field lands, due to thermal resistance differences between channels and lands. Aged MEAs exhibit increased water retention, likely due to increased hydrophilicity of the diffusion media with aging. Synchrotron micro‐XRD maps unveil significant heterogeneity in Pt particle size distribution in the aged MEAs, correlated with preferential liquid water accumulation under flow field lands. This study highlights the critical role of flow field design and water distribution in catalyst degradation, underscoring the need for innovative strategies to enhance fuel cell durability and performance. This study examines how liquid water distribution in polymer electrolyte fuel cells impacts catalyst degradation. High‐resolution neutron imaging and synchrotron micro‐X‐ray diffraction quantify the liquid water distribution and platinum (Pt) catalyst growth, respectively. The results show that water accumulates under flow field lands, exacerbating Pt catalyst growth, and emphasize the role of flow field design in fuel cell durability.</description><identifier>ISSN: 1613-6810</identifier><identifier>ISSN: 1613-6829</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202404023</identifier><identifier>PMID: 39449563</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>accelerated stress test (AST) ; Accelerated tests ; Accumulation ; catalyst growth ; Catalysts ; Degradation ; Electrolytes ; Electrolytic cells ; Flow mapping ; Flow resistance ; Fuel cells ; Heterogeneity ; neutron imaging ; Particle size ; Particle size distribution ; Polymers ; Proton exchange membrane fuel cells ; Thermal resistance ; Water ; Water distribution ; Water engineering</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-12, Vol.20 (52), p.e2404023-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2583-bea2d082c3fb02da0b5fedf031340e8f7f68f0a938fac3b7bcea99f9bf34738f3</cites><orcidid>0000-0003-1654-5753</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202404023$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202404023$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39449563$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sharma, Preetam</creatorcontrib><creatorcontrib>Aaron, Douglas</creatorcontrib><creatorcontrib>Boillat, Pierre</creatorcontrib><creatorcontrib>Cheng, Lei</creatorcontrib><creatorcontrib>Johnston, Christina</creatorcontrib><creatorcontrib>Mench, Matthew M.</creatorcontrib><title>Correlating Catalyst Growth with Liquid Water Distribution in Polymer Electrolyte Fuel Cells</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>This study investigates the impact of liquid water distribution in a polymer electrolyte fuel cell (PEFC) on the spatially heterogeneous platinum (Pt) catalyst degradation. The membrane electrode assemblies (MEAs) are aged using accelerated stress tests (ASTs) in varied cathode gas environments (N2 and air) to instigate Pt catalyst degradation. The study employs high‐resolution neutron imaging and synchrotron micro‐X‐ray diffraction (micro‐XRD) to map liquid water distribution and Pt particle size, respectively. Neutron radiographs reveal liquid water accumulation primarily within the diffusion media, especially under flow field lands, due to thermal resistance differences between channels and lands. Aged MEAs exhibit increased water retention, likely due to increased hydrophilicity of the diffusion media with aging. Synchrotron micro‐XRD maps unveil significant heterogeneity in Pt particle size distribution in the aged MEAs, correlated with preferential liquid water accumulation under flow field lands. This study highlights the critical role of flow field design and water distribution in catalyst degradation, underscoring the need for innovative strategies to enhance fuel cell durability and performance. This study examines how liquid water distribution in polymer electrolyte fuel cells impacts catalyst degradation. High‐resolution neutron imaging and synchrotron micro‐X‐ray diffraction quantify the liquid water distribution and platinum (Pt) catalyst growth, respectively. The results show that water accumulates under flow field lands, exacerbating Pt catalyst growth, and emphasize the role of flow field design in fuel cell durability.</description><subject>accelerated stress test (AST)</subject><subject>Accelerated tests</subject><subject>Accumulation</subject><subject>catalyst growth</subject><subject>Catalysts</subject><subject>Degradation</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Flow mapping</subject><subject>Flow resistance</subject><subject>Fuel cells</subject><subject>Heterogeneity</subject><subject>neutron imaging</subject><subject>Particle size</subject><subject>Particle size distribution</subject><subject>Polymers</subject><subject>Proton exchange membrane fuel cells</subject><subject>Thermal resistance</subject><subject>Water</subject><subject>Water distribution</subject><subject>Water engineering</subject><issn>1613-6810</issn><issn>1613-6829</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LwzAYxoMobn5cPUrAi5fONEk_cpS6TaGioOJFKGmbaEbabknK6H9vxuYEL17evHn45eHJA8BFiCYhQvjGNlpPMMIUUYTJARiHcUiCOMXscL-HaAROrF0gREJMk2MwIoxSFsVkDD6yzhihuVPtJ8y443qwDs5Nt3ZfcK38yNWqVzV8504YeKesM6rsnepaqFr43Omh8fpUi8oZf3ECznqhYSa0tmfgSHJtxfnuPAVvs-lrdh_kT_OH7DYPKhylJCgFxzVKcUVkiXDNURlJUUufllAkUpnIOJWIM5JKXpEyKSvBGZOslIQmXiSn4HrruzTdqhfWFY2ylU_AW9H1tvDfRhGLcZp69OoPuuh60_p0nqKMJnGUxJ6abKnKdNYaIYulUQ03QxGiYtN7sem92PfuH1zubPuyEfUe_ynaA2wLrJUWwz92xctjnv-afwM50JBn</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Sharma, Preetam</creator><creator>Aaron, Douglas</creator><creator>Boillat, Pierre</creator><creator>Cheng, Lei</creator><creator>Johnston, Christina</creator><creator>Mench, Matthew M.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1654-5753</orcidid></search><sort><creationdate>20241201</creationdate><title>Correlating Catalyst Growth with Liquid Water Distribution in Polymer Electrolyte Fuel Cells</title><author>Sharma, Preetam ; Aaron, Douglas ; Boillat, Pierre ; Cheng, Lei ; Johnston, Christina ; Mench, Matthew M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2583-bea2d082c3fb02da0b5fedf031340e8f7f68f0a938fac3b7bcea99f9bf34738f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>accelerated stress test (AST)</topic><topic>Accelerated tests</topic><topic>Accumulation</topic><topic>catalyst growth</topic><topic>Catalysts</topic><topic>Degradation</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Flow mapping</topic><topic>Flow resistance</topic><topic>Fuel cells</topic><topic>Heterogeneity</topic><topic>neutron imaging</topic><topic>Particle size</topic><topic>Particle size distribution</topic><topic>Polymers</topic><topic>Proton exchange membrane fuel cells</topic><topic>Thermal resistance</topic><topic>Water</topic><topic>Water distribution</topic><topic>Water engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharma, Preetam</creatorcontrib><creatorcontrib>Aaron, Douglas</creatorcontrib><creatorcontrib>Boillat, Pierre</creatorcontrib><creatorcontrib>Cheng, Lei</creatorcontrib><creatorcontrib>Johnston, Christina</creatorcontrib><creatorcontrib>Mench, Matthew M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharma, Preetam</au><au>Aaron, Douglas</au><au>Boillat, Pierre</au><au>Cheng, Lei</au><au>Johnston, Christina</au><au>Mench, Matthew M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Correlating Catalyst Growth with Liquid Water Distribution in Polymer Electrolyte Fuel Cells</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>20</volume><issue>52</issue><spage>e2404023</spage><epage>n/a</epage><pages>e2404023-n/a</pages><issn>1613-6810</issn><issn>1613-6829</issn><eissn>1613-6829</eissn><abstract>This study investigates the impact of liquid water distribution in a polymer electrolyte fuel cell (PEFC) on the spatially heterogeneous platinum (Pt) catalyst degradation. The membrane electrode assemblies (MEAs) are aged using accelerated stress tests (ASTs) in varied cathode gas environments (N2 and air) to instigate Pt catalyst degradation. The study employs high‐resolution neutron imaging and synchrotron micro‐X‐ray diffraction (micro‐XRD) to map liquid water distribution and Pt particle size, respectively. Neutron radiographs reveal liquid water accumulation primarily within the diffusion media, especially under flow field lands, due to thermal resistance differences between channels and lands. Aged MEAs exhibit increased water retention, likely due to increased hydrophilicity of the diffusion media with aging. Synchrotron micro‐XRD maps unveil significant heterogeneity in Pt particle size distribution in the aged MEAs, correlated with preferential liquid water accumulation under flow field lands. This study highlights the critical role of flow field design and water distribution in catalyst degradation, underscoring the need for innovative strategies to enhance fuel cell durability and performance. This study examines how liquid water distribution in polymer electrolyte fuel cells impacts catalyst degradation. High‐resolution neutron imaging and synchrotron micro‐X‐ray diffraction quantify the liquid water distribution and platinum (Pt) catalyst growth, respectively. The results show that water accumulates under flow field lands, exacerbating Pt catalyst growth, and emphasize the role of flow field design in fuel cell durability.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39449563</pmid><doi>10.1002/smll.202404023</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1654-5753</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2024-12, Vol.20 (52), p.e2404023-n/a
issn 1613-6810
1613-6829
1613-6829
language eng
recordid cdi_proquest_miscellaneous_3120596288
source Wiley Online Library Journals Frontfile Complete
subjects accelerated stress test (AST)
Accelerated tests
Accumulation
catalyst growth
Catalysts
Degradation
Electrolytes
Electrolytic cells
Flow mapping
Flow resistance
Fuel cells
Heterogeneity
neutron imaging
Particle size
Particle size distribution
Polymers
Proton exchange membrane fuel cells
Thermal resistance
Water
Water distribution
Water engineering
title Correlating Catalyst Growth with Liquid Water Distribution in Polymer Electrolyte Fuel Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A05%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Correlating%20Catalyst%20Growth%20with%20Liquid%20Water%20Distribution%20in%20Polymer%20Electrolyte%20Fuel%20Cells&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Sharma,%20Preetam&rft.date=2024-12-01&rft.volume=20&rft.issue=52&rft.spage=e2404023&rft.epage=n/a&rft.pages=e2404023-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202404023&rft_dat=%3Cproquest_cross%3E3149476576%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3149476576&rft_id=info:pmid/39449563&rfr_iscdi=true