Correlating Catalyst Growth with Liquid Water Distribution in Polymer Electrolyte Fuel Cells
This study investigates the impact of liquid water distribution in a polymer electrolyte fuel cell (PEFC) on the spatially heterogeneous platinum (Pt) catalyst degradation. The membrane electrode assemblies (MEAs) are aged using accelerated stress tests (ASTs) in varied cathode gas environments (N2...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-12, Vol.20 (52), p.e2404023-n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 52 |
container_start_page | e2404023 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 20 |
creator | Sharma, Preetam Aaron, Douglas Boillat, Pierre Cheng, Lei Johnston, Christina Mench, Matthew M. |
description | This study investigates the impact of liquid water distribution in a polymer electrolyte fuel cell (PEFC) on the spatially heterogeneous platinum (Pt) catalyst degradation. The membrane electrode assemblies (MEAs) are aged using accelerated stress tests (ASTs) in varied cathode gas environments (N2 and air) to instigate Pt catalyst degradation. The study employs high‐resolution neutron imaging and synchrotron micro‐X‐ray diffraction (micro‐XRD) to map liquid water distribution and Pt particle size, respectively. Neutron radiographs reveal liquid water accumulation primarily within the diffusion media, especially under flow field lands, due to thermal resistance differences between channels and lands. Aged MEAs exhibit increased water retention, likely due to increased hydrophilicity of the diffusion media with aging. Synchrotron micro‐XRD maps unveil significant heterogeneity in Pt particle size distribution in the aged MEAs, correlated with preferential liquid water accumulation under flow field lands. This study highlights the critical role of flow field design and water distribution in catalyst degradation, underscoring the need for innovative strategies to enhance fuel cell durability and performance.
This study examines how liquid water distribution in polymer electrolyte fuel cells impacts catalyst degradation. High‐resolution neutron imaging and synchrotron micro‐X‐ray diffraction quantify the liquid water distribution and platinum (Pt) catalyst growth, respectively. The results show that water accumulates under flow field lands, exacerbating Pt catalyst growth, and emphasize the role of flow field design in fuel cell durability. |
doi_str_mv | 10.1002/smll.202404023 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3120596288</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3149476576</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2583-bea2d082c3fb02da0b5fedf031340e8f7f68f0a938fac3b7bcea99f9bf34738f3</originalsourceid><addsrcrecordid>eNqFkM1LwzAYxoMobn5cPUrAi5fONEk_cpS6TaGioOJFKGmbaEbabknK6H9vxuYEL17evHn45eHJA8BFiCYhQvjGNlpPMMIUUYTJARiHcUiCOMXscL-HaAROrF0gREJMk2MwIoxSFsVkDD6yzhihuVPtJ8y443qwDs5Nt3ZfcK38yNWqVzV8504YeKesM6rsnepaqFr43Omh8fpUi8oZf3ECznqhYSa0tmfgSHJtxfnuPAVvs-lrdh_kT_OH7DYPKhylJCgFxzVKcUVkiXDNURlJUUufllAkUpnIOJWIM5JKXpEyKSvBGZOslIQmXiSn4HrruzTdqhfWFY2ylU_AW9H1tvDfRhGLcZp69OoPuuh60_p0nqKMJnGUxJ6abKnKdNYaIYulUQ03QxGiYtN7sem92PfuH1zubPuyEfUe_ynaA2wLrJUWwz92xctjnv-afwM50JBn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149476576</pqid></control><display><type>article</type><title>Correlating Catalyst Growth with Liquid Water Distribution in Polymer Electrolyte Fuel Cells</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Sharma, Preetam ; Aaron, Douglas ; Boillat, Pierre ; Cheng, Lei ; Johnston, Christina ; Mench, Matthew M.</creator><creatorcontrib>Sharma, Preetam ; Aaron, Douglas ; Boillat, Pierre ; Cheng, Lei ; Johnston, Christina ; Mench, Matthew M.</creatorcontrib><description>This study investigates the impact of liquid water distribution in a polymer electrolyte fuel cell (PEFC) on the spatially heterogeneous platinum (Pt) catalyst degradation. The membrane electrode assemblies (MEAs) are aged using accelerated stress tests (ASTs) in varied cathode gas environments (N2 and air) to instigate Pt catalyst degradation. The study employs high‐resolution neutron imaging and synchrotron micro‐X‐ray diffraction (micro‐XRD) to map liquid water distribution and Pt particle size, respectively. Neutron radiographs reveal liquid water accumulation primarily within the diffusion media, especially under flow field lands, due to thermal resistance differences between channels and lands. Aged MEAs exhibit increased water retention, likely due to increased hydrophilicity of the diffusion media with aging. Synchrotron micro‐XRD maps unveil significant heterogeneity in Pt particle size distribution in the aged MEAs, correlated with preferential liquid water accumulation under flow field lands. This study highlights the critical role of flow field design and water distribution in catalyst degradation, underscoring the need for innovative strategies to enhance fuel cell durability and performance.
This study examines how liquid water distribution in polymer electrolyte fuel cells impacts catalyst degradation. High‐resolution neutron imaging and synchrotron micro‐X‐ray diffraction quantify the liquid water distribution and platinum (Pt) catalyst growth, respectively. The results show that water accumulates under flow field lands, exacerbating Pt catalyst growth, and emphasize the role of flow field design in fuel cell durability.</description><identifier>ISSN: 1613-6810</identifier><identifier>ISSN: 1613-6829</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202404023</identifier><identifier>PMID: 39449563</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>accelerated stress test (AST) ; Accelerated tests ; Accumulation ; catalyst growth ; Catalysts ; Degradation ; Electrolytes ; Electrolytic cells ; Flow mapping ; Flow resistance ; Fuel cells ; Heterogeneity ; neutron imaging ; Particle size ; Particle size distribution ; Polymers ; Proton exchange membrane fuel cells ; Thermal resistance ; Water ; Water distribution ; Water engineering</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-12, Vol.20 (52), p.e2404023-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2583-bea2d082c3fb02da0b5fedf031340e8f7f68f0a938fac3b7bcea99f9bf34738f3</cites><orcidid>0000-0003-1654-5753</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202404023$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202404023$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39449563$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sharma, Preetam</creatorcontrib><creatorcontrib>Aaron, Douglas</creatorcontrib><creatorcontrib>Boillat, Pierre</creatorcontrib><creatorcontrib>Cheng, Lei</creatorcontrib><creatorcontrib>Johnston, Christina</creatorcontrib><creatorcontrib>Mench, Matthew M.</creatorcontrib><title>Correlating Catalyst Growth with Liquid Water Distribution in Polymer Electrolyte Fuel Cells</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>This study investigates the impact of liquid water distribution in a polymer electrolyte fuel cell (PEFC) on the spatially heterogeneous platinum (Pt) catalyst degradation. The membrane electrode assemblies (MEAs) are aged using accelerated stress tests (ASTs) in varied cathode gas environments (N2 and air) to instigate Pt catalyst degradation. The study employs high‐resolution neutron imaging and synchrotron micro‐X‐ray diffraction (micro‐XRD) to map liquid water distribution and Pt particle size, respectively. Neutron radiographs reveal liquid water accumulation primarily within the diffusion media, especially under flow field lands, due to thermal resistance differences between channels and lands. Aged MEAs exhibit increased water retention, likely due to increased hydrophilicity of the diffusion media with aging. Synchrotron micro‐XRD maps unveil significant heterogeneity in Pt particle size distribution in the aged MEAs, correlated with preferential liquid water accumulation under flow field lands. This study highlights the critical role of flow field design and water distribution in catalyst degradation, underscoring the need for innovative strategies to enhance fuel cell durability and performance.
This study examines how liquid water distribution in polymer electrolyte fuel cells impacts catalyst degradation. High‐resolution neutron imaging and synchrotron micro‐X‐ray diffraction quantify the liquid water distribution and platinum (Pt) catalyst growth, respectively. The results show that water accumulates under flow field lands, exacerbating Pt catalyst growth, and emphasize the role of flow field design in fuel cell durability.</description><subject>accelerated stress test (AST)</subject><subject>Accelerated tests</subject><subject>Accumulation</subject><subject>catalyst growth</subject><subject>Catalysts</subject><subject>Degradation</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Flow mapping</subject><subject>Flow resistance</subject><subject>Fuel cells</subject><subject>Heterogeneity</subject><subject>neutron imaging</subject><subject>Particle size</subject><subject>Particle size distribution</subject><subject>Polymers</subject><subject>Proton exchange membrane fuel cells</subject><subject>Thermal resistance</subject><subject>Water</subject><subject>Water distribution</subject><subject>Water engineering</subject><issn>1613-6810</issn><issn>1613-6829</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LwzAYxoMobn5cPUrAi5fONEk_cpS6TaGioOJFKGmbaEbabknK6H9vxuYEL17evHn45eHJA8BFiCYhQvjGNlpPMMIUUYTJARiHcUiCOMXscL-HaAROrF0gREJMk2MwIoxSFsVkDD6yzhihuVPtJ8y443qwDs5Nt3ZfcK38yNWqVzV8504YeKesM6rsnepaqFr43Omh8fpUi8oZf3ECznqhYSa0tmfgSHJtxfnuPAVvs-lrdh_kT_OH7DYPKhylJCgFxzVKcUVkiXDNURlJUUufllAkUpnIOJWIM5JKXpEyKSvBGZOslIQmXiSn4HrruzTdqhfWFY2ylU_AW9H1tvDfRhGLcZp69OoPuuh60_p0nqKMJnGUxJ6abKnKdNYaIYulUQ03QxGiYtN7sem92PfuH1zubPuyEfUe_ynaA2wLrJUWwz92xctjnv-afwM50JBn</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Sharma, Preetam</creator><creator>Aaron, Douglas</creator><creator>Boillat, Pierre</creator><creator>Cheng, Lei</creator><creator>Johnston, Christina</creator><creator>Mench, Matthew M.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1654-5753</orcidid></search><sort><creationdate>20241201</creationdate><title>Correlating Catalyst Growth with Liquid Water Distribution in Polymer Electrolyte Fuel Cells</title><author>Sharma, Preetam ; Aaron, Douglas ; Boillat, Pierre ; Cheng, Lei ; Johnston, Christina ; Mench, Matthew M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2583-bea2d082c3fb02da0b5fedf031340e8f7f68f0a938fac3b7bcea99f9bf34738f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>accelerated stress test (AST)</topic><topic>Accelerated tests</topic><topic>Accumulation</topic><topic>catalyst growth</topic><topic>Catalysts</topic><topic>Degradation</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Flow mapping</topic><topic>Flow resistance</topic><topic>Fuel cells</topic><topic>Heterogeneity</topic><topic>neutron imaging</topic><topic>Particle size</topic><topic>Particle size distribution</topic><topic>Polymers</topic><topic>Proton exchange membrane fuel cells</topic><topic>Thermal resistance</topic><topic>Water</topic><topic>Water distribution</topic><topic>Water engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharma, Preetam</creatorcontrib><creatorcontrib>Aaron, Douglas</creatorcontrib><creatorcontrib>Boillat, Pierre</creatorcontrib><creatorcontrib>Cheng, Lei</creatorcontrib><creatorcontrib>Johnston, Christina</creatorcontrib><creatorcontrib>Mench, Matthew M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharma, Preetam</au><au>Aaron, Douglas</au><au>Boillat, Pierre</au><au>Cheng, Lei</au><au>Johnston, Christina</au><au>Mench, Matthew M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Correlating Catalyst Growth with Liquid Water Distribution in Polymer Electrolyte Fuel Cells</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>20</volume><issue>52</issue><spage>e2404023</spage><epage>n/a</epage><pages>e2404023-n/a</pages><issn>1613-6810</issn><issn>1613-6829</issn><eissn>1613-6829</eissn><abstract>This study investigates the impact of liquid water distribution in a polymer electrolyte fuel cell (PEFC) on the spatially heterogeneous platinum (Pt) catalyst degradation. The membrane electrode assemblies (MEAs) are aged using accelerated stress tests (ASTs) in varied cathode gas environments (N2 and air) to instigate Pt catalyst degradation. The study employs high‐resolution neutron imaging and synchrotron micro‐X‐ray diffraction (micro‐XRD) to map liquid water distribution and Pt particle size, respectively. Neutron radiographs reveal liquid water accumulation primarily within the diffusion media, especially under flow field lands, due to thermal resistance differences between channels and lands. Aged MEAs exhibit increased water retention, likely due to increased hydrophilicity of the diffusion media with aging. Synchrotron micro‐XRD maps unveil significant heterogeneity in Pt particle size distribution in the aged MEAs, correlated with preferential liquid water accumulation under flow field lands. This study highlights the critical role of flow field design and water distribution in catalyst degradation, underscoring the need for innovative strategies to enhance fuel cell durability and performance.
This study examines how liquid water distribution in polymer electrolyte fuel cells impacts catalyst degradation. High‐resolution neutron imaging and synchrotron micro‐X‐ray diffraction quantify the liquid water distribution and platinum (Pt) catalyst growth, respectively. The results show that water accumulates under flow field lands, exacerbating Pt catalyst growth, and emphasize the role of flow field design in fuel cell durability.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39449563</pmid><doi>10.1002/smll.202404023</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1654-5753</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2024-12, Vol.20 (52), p.e2404023-n/a |
issn | 1613-6810 1613-6829 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_3120596288 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | accelerated stress test (AST) Accelerated tests Accumulation catalyst growth Catalysts Degradation Electrolytes Electrolytic cells Flow mapping Flow resistance Fuel cells Heterogeneity neutron imaging Particle size Particle size distribution Polymers Proton exchange membrane fuel cells Thermal resistance Water Water distribution Water engineering |
title | Correlating Catalyst Growth with Liquid Water Distribution in Polymer Electrolyte Fuel Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A05%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Correlating%20Catalyst%20Growth%20with%20Liquid%20Water%20Distribution%20in%20Polymer%20Electrolyte%20Fuel%20Cells&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Sharma,%20Preetam&rft.date=2024-12-01&rft.volume=20&rft.issue=52&rft.spage=e2404023&rft.epage=n/a&rft.pages=e2404023-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202404023&rft_dat=%3Cproquest_cross%3E3149476576%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3149476576&rft_id=info:pmid/39449563&rfr_iscdi=true |