Theoretical mechanistic insights on the thermal and acid-catalyzed rearrangements of N -methyl- N -nitroanilines

The thermal and acid-catalyzed rearrangement mechanisms of -methyl- -nitroanilines were theoretically investigated density functional theory (DFT) calculations for all possible proposed mechanisms. The results indicate that the thermal rearrangement of -methyl- -nitroanilines undergoes a radical pai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Organic & biomolecular chemistry 2024-11, Vol.22 (46), p.9101-9112
Hauptverfasser: Cheng, Shi, Su, Chongjie, Chen, Tian, Xu, Jiaxi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9112
container_issue 46
container_start_page 9101
container_title Organic & biomolecular chemistry
container_volume 22
creator Cheng, Shi
Su, Chongjie
Chen, Tian
Xu, Jiaxi
description The thermal and acid-catalyzed rearrangement mechanisms of -methyl- -nitroanilines were theoretically investigated density functional theory (DFT) calculations for all possible proposed mechanisms. The results indicate that the thermal rearrangement of -methyl- -nitroanilines undergoes a radical pair complex mechanism through the homolysis of their N-N bond to generate a radical pair complex and the recombination of the radical pairs followed by aromatization. For the acid-catalyzed rearrangements, -methyl- -nitroanilines are first protonated on the nitrogen atom of their aniline moiety and then generate protonated -methyl- -nitroso- -phenylhydroxylamines through a three-membered spirocyclic oxadiaziridine transition state. The -protonated -methyl- -nitroso- -phenylhydroxylamines favor homolytic dissociation to generate -methylaniline cationic radical and nitrogen dioxide complexes, which further combine together and aromatize to afford protonated -methyl- -nitroanilines and -methyl- -nitroanilines, respectively. The radical pair complexes are more stable than the corresponding solvent-caged radical pairs. The thermal rearrangements require higher activation energy than the corresponding acid-catalyzed rearrangements.
doi_str_mv 10.1039/d4ob01449a
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3120595420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3120595420</sourcerecordid><originalsourceid>FETCH-LOGICAL-c204t-b7ec6dba0beaede6f2cccb53541135f83feaf949572df10e4caa583de3e452793</originalsourceid><addsrcrecordid>eNpd0UtLxDAQB_Agirs-Ln4AKXgRoZpnuzn6VhD3sp7LNJnaSJuuSfewfnqzvg4ewszAL39ChpAjRs8ZFfrCyqGmTEoNW2TKZFnmVAm9_ddzOiF7Mb5RynRZyF0yETppXsymZLlocQg4OgNd1qNpwbuYpsz56F7bMWaDz8YWNyf0yYC3GRhncwMjdOsPtFlACAH8K_boNxea7DnLexzbdZdvWu_GMKTcznmMB2SngS7i4U_dJy93t4vrh_xpfv94ffmUG07lmNclmsLWQGsEtFg03BhTK6EkY0I1M9EgNFpqVXLbMIrSAKiZsChQKl5qsU9Ov3OXYXhfYRyr3kWDXQceh1WsBONUaSU5TfTkH30bVsGn1yUlhCi5VEVSZ9_KhCHGgE21DK6HsK4YrTZ7qG7k_OprD5cJH_9Eruoe7R_9_XjxCYPjhFs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133372456</pqid></control><display><type>article</type><title>Theoretical mechanistic insights on the thermal and acid-catalyzed rearrangements of N -methyl- N -nitroanilines</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Cheng, Shi ; Su, Chongjie ; Chen, Tian ; Xu, Jiaxi</creator><creatorcontrib>Cheng, Shi ; Su, Chongjie ; Chen, Tian ; Xu, Jiaxi</creatorcontrib><description>The thermal and acid-catalyzed rearrangement mechanisms of -methyl- -nitroanilines were theoretically investigated density functional theory (DFT) calculations for all possible proposed mechanisms. The results indicate that the thermal rearrangement of -methyl- -nitroanilines undergoes a radical pair complex mechanism through the homolysis of their N-N bond to generate a radical pair complex and the recombination of the radical pairs followed by aromatization. For the acid-catalyzed rearrangements, -methyl- -nitroanilines are first protonated on the nitrogen atom of their aniline moiety and then generate protonated -methyl- -nitroso- -phenylhydroxylamines through a three-membered spirocyclic oxadiaziridine transition state. The -protonated -methyl- -nitroso- -phenylhydroxylamines favor homolytic dissociation to generate -methylaniline cationic radical and nitrogen dioxide complexes, which further combine together and aromatize to afford protonated -methyl- -nitroanilines and -methyl- -nitroanilines, respectively. The radical pair complexes are more stable than the corresponding solvent-caged radical pairs. The thermal rearrangements require higher activation energy than the corresponding acid-catalyzed rearrangements.</description><identifier>ISSN: 1477-0520</identifier><identifier>ISSN: 1477-0539</identifier><identifier>EISSN: 1477-0539</identifier><identifier>DOI: 10.1039/d4ob01449a</identifier><identifier>PMID: 39449268</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Aniline ; Density functional theory ; Nitrogen dioxide</subject><ispartof>Organic &amp; biomolecular chemistry, 2024-11, Vol.22 (46), p.9101-9112</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c204t-b7ec6dba0beaede6f2cccb53541135f83feaf949572df10e4caa583de3e452793</cites><orcidid>0000-0002-9039-4933</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39449268$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheng, Shi</creatorcontrib><creatorcontrib>Su, Chongjie</creatorcontrib><creatorcontrib>Chen, Tian</creatorcontrib><creatorcontrib>Xu, Jiaxi</creatorcontrib><title>Theoretical mechanistic insights on the thermal and acid-catalyzed rearrangements of N -methyl- N -nitroanilines</title><title>Organic &amp; biomolecular chemistry</title><addtitle>Org Biomol Chem</addtitle><description>The thermal and acid-catalyzed rearrangement mechanisms of -methyl- -nitroanilines were theoretically investigated density functional theory (DFT) calculations for all possible proposed mechanisms. The results indicate that the thermal rearrangement of -methyl- -nitroanilines undergoes a radical pair complex mechanism through the homolysis of their N-N bond to generate a radical pair complex and the recombination of the radical pairs followed by aromatization. For the acid-catalyzed rearrangements, -methyl- -nitroanilines are first protonated on the nitrogen atom of their aniline moiety and then generate protonated -methyl- -nitroso- -phenylhydroxylamines through a three-membered spirocyclic oxadiaziridine transition state. The -protonated -methyl- -nitroso- -phenylhydroxylamines favor homolytic dissociation to generate -methylaniline cationic radical and nitrogen dioxide complexes, which further combine together and aromatize to afford protonated -methyl- -nitroanilines and -methyl- -nitroanilines, respectively. The radical pair complexes are more stable than the corresponding solvent-caged radical pairs. The thermal rearrangements require higher activation energy than the corresponding acid-catalyzed rearrangements.</description><subject>Aniline</subject><subject>Density functional theory</subject><subject>Nitrogen dioxide</subject><issn>1477-0520</issn><issn>1477-0539</issn><issn>1477-0539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpd0UtLxDAQB_Agirs-Ln4AKXgRoZpnuzn6VhD3sp7LNJnaSJuuSfewfnqzvg4ewszAL39ChpAjRs8ZFfrCyqGmTEoNW2TKZFnmVAm9_ddzOiF7Mb5RynRZyF0yETppXsymZLlocQg4OgNd1qNpwbuYpsz56F7bMWaDz8YWNyf0yYC3GRhncwMjdOsPtFlACAH8K_boNxea7DnLexzbdZdvWu_GMKTcznmMB2SngS7i4U_dJy93t4vrh_xpfv94ffmUG07lmNclmsLWQGsEtFg03BhTK6EkY0I1M9EgNFpqVXLbMIrSAKiZsChQKl5qsU9Ov3OXYXhfYRyr3kWDXQceh1WsBONUaSU5TfTkH30bVsGn1yUlhCi5VEVSZ9_KhCHGgE21DK6HsK4YrTZ7qG7k_OprD5cJH_9Eruoe7R_9_XjxCYPjhFs</recordid><startdate>20241127</startdate><enddate>20241127</enddate><creator>Cheng, Shi</creator><creator>Su, Chongjie</creator><creator>Chen, Tian</creator><creator>Xu, Jiaxi</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T7</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9039-4933</orcidid></search><sort><creationdate>20241127</creationdate><title>Theoretical mechanistic insights on the thermal and acid-catalyzed rearrangements of N -methyl- N -nitroanilines</title><author>Cheng, Shi ; Su, Chongjie ; Chen, Tian ; Xu, Jiaxi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c204t-b7ec6dba0beaede6f2cccb53541135f83feaf949572df10e4caa583de3e452793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aniline</topic><topic>Density functional theory</topic><topic>Nitrogen dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Shi</creatorcontrib><creatorcontrib>Su, Chongjie</creatorcontrib><creatorcontrib>Chen, Tian</creatorcontrib><creatorcontrib>Xu, Jiaxi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Organic &amp; biomolecular chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Shi</au><au>Su, Chongjie</au><au>Chen, Tian</au><au>Xu, Jiaxi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical mechanistic insights on the thermal and acid-catalyzed rearrangements of N -methyl- N -nitroanilines</atitle><jtitle>Organic &amp; biomolecular chemistry</jtitle><addtitle>Org Biomol Chem</addtitle><date>2024-11-27</date><risdate>2024</risdate><volume>22</volume><issue>46</issue><spage>9101</spage><epage>9112</epage><pages>9101-9112</pages><issn>1477-0520</issn><issn>1477-0539</issn><eissn>1477-0539</eissn><abstract>The thermal and acid-catalyzed rearrangement mechanisms of -methyl- -nitroanilines were theoretically investigated density functional theory (DFT) calculations for all possible proposed mechanisms. The results indicate that the thermal rearrangement of -methyl- -nitroanilines undergoes a radical pair complex mechanism through the homolysis of their N-N bond to generate a radical pair complex and the recombination of the radical pairs followed by aromatization. For the acid-catalyzed rearrangements, -methyl- -nitroanilines are first protonated on the nitrogen atom of their aniline moiety and then generate protonated -methyl- -nitroso- -phenylhydroxylamines through a three-membered spirocyclic oxadiaziridine transition state. The -protonated -methyl- -nitroso- -phenylhydroxylamines favor homolytic dissociation to generate -methylaniline cationic radical and nitrogen dioxide complexes, which further combine together and aromatize to afford protonated -methyl- -nitroanilines and -methyl- -nitroanilines, respectively. The radical pair complexes are more stable than the corresponding solvent-caged radical pairs. The thermal rearrangements require higher activation energy than the corresponding acid-catalyzed rearrangements.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>39449268</pmid><doi>10.1039/d4ob01449a</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9039-4933</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1477-0520
ispartof Organic & biomolecular chemistry, 2024-11, Vol.22 (46), p.9101-9112
issn 1477-0520
1477-0539
1477-0539
language eng
recordid cdi_proquest_miscellaneous_3120595420
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Aniline
Density functional theory
Nitrogen dioxide
title Theoretical mechanistic insights on the thermal and acid-catalyzed rearrangements of N -methyl- N -nitroanilines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T12%3A37%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20mechanistic%20insights%20on%20the%20thermal%20and%20acid-catalyzed%20rearrangements%20of%20N%20-methyl-%20N%20-nitroanilines&rft.jtitle=Organic%20&%20biomolecular%20chemistry&rft.au=Cheng,%20Shi&rft.date=2024-11-27&rft.volume=22&rft.issue=46&rft.spage=9101&rft.epage=9112&rft.pages=9101-9112&rft.issn=1477-0520&rft.eissn=1477-0539&rft_id=info:doi/10.1039/d4ob01449a&rft_dat=%3Cproquest_cross%3E3120595420%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133372456&rft_id=info:pmid/39449268&rfr_iscdi=true