Low pKa Phosphido-Boranes Capture Carbon Dioxide with Exceptional Strength: DFT Predictions Followed by Experimental Validation

We have developed a class of phosphido-boranes (BoPh's) with formula X+[R2PBH3-] that bind CO2 with exceptional strength (ΔG = -8.2 to -24.0 kcal/mol) at ambient conditions. We use quantum mechanics (QM) to determine how the choice of electron-donating versus electron-withdrawing ligand impacts...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2024-10, Vol.15 (43), p.10909
Hauptverfasser: Riasati, Aarya D, Musgrave Iii, Charles B, Yeboah, Nathaniel, Prokofjevs, Aleksandrs, Goddard Iii, William A
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 43
container_start_page 10909
container_title The journal of physical chemistry letters
container_volume 15
creator Riasati, Aarya D
Musgrave Iii, Charles B
Yeboah, Nathaniel
Prokofjevs, Aleksandrs
Goddard Iii, William A
description We have developed a class of phosphido-boranes (BoPh's) with formula X+[R2PBH3-] that bind CO2 with exceptional strength (ΔG = -8.2 to -24.0 kcal/mol) at ambient conditions. We use quantum mechanics (QM) to determine how the choice of electron-donating versus electron-withdrawing ligand impacts the CO2 binding strength, in the presence of a donating borane moiety. We also examine the role of the cation in CO2 binding, finding that the ion position relative to the bound CO2 dramatically alters binding strength. We find that the BoPh with two ethyl ligands Li[Et2PBH3] leads to ΔG = -24.0 kcal/mol upon CO2 binding while Li[Ph2PBH3] leads to ΔG = -12.8 kcal/mol. We synthesized the BoPh with two phenyl ligands Li[Ph2PBH3] to validate the QM-predicted stability and predicted pKa.We have developed a class of phosphido-boranes (BoPh's) with formula X+[R2PBH3-] that bind CO2 with exceptional strength (ΔG = -8.2 to -24.0 kcal/mol) at ambient conditions. We use quantum mechanics (QM) to determine how the choice of electron-donating versus electron-withdrawing ligand impacts the CO2 binding strength, in the presence of a donating borane moiety. We also examine the role of the cation in CO2 binding, finding that the ion position relative to the bound CO2 dramatically alters binding strength. We find that the BoPh with two ethyl ligands Li[Et2PBH3] leads to ΔG = -24.0 kcal/mol upon CO2 binding while Li[Ph2PBH3] leads to ΔG = -12.8 kcal/mol. We synthesized the BoPh with two phenyl ligands Li[Ph2PBH3] to validate the QM-predicted stability and predicted pKa.
doi_str_mv 10.1021/acs.jpclett.4c02484
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_3120061477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3120061477</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_31200614773</originalsourceid><addsrcrecordid>eNqVjrFOwzAURS0EEqXwBSxvZEmw00BSRtpGSHSoRMVauc6DuHL9jO0oZeLX60oMrEznSvce6TJ2K3gueCHupQr5zimDMeal4kVZl2dsJKZlnVWifjj_ky_ZVQg7zh-nvK5G7GdJA7hXCauOgut0S9kzeWkxwEy62HtM9FuyMNd00C3CoGMHi4NCFzVZaeAterSfsXuCebOGlcdWq1MVoCFjaMAWtt_JcOj1Hm1Myrs0upWn0TW7-JAm4M0vx-yuWaxnL5nz9NVjiJu9DgqNSZeoD5uJKNJ3UVbV5B_TI-VdXVA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120061477</pqid></control><display><type>article</type><title>Low pKa Phosphido-Boranes Capture Carbon Dioxide with Exceptional Strength: DFT Predictions Followed by Experimental Validation</title><source>ACS Publications</source><creator>Riasati, Aarya D ; Musgrave Iii, Charles B ; Yeboah, Nathaniel ; Prokofjevs, Aleksandrs ; Goddard Iii, William A</creator><creatorcontrib>Riasati, Aarya D ; Musgrave Iii, Charles B ; Yeboah, Nathaniel ; Prokofjevs, Aleksandrs ; Goddard Iii, William A</creatorcontrib><description>We have developed a class of phosphido-boranes (BoPh's) with formula X+[R2PBH3-] that bind CO2 with exceptional strength (ΔG = -8.2 to -24.0 kcal/mol) at ambient conditions. We use quantum mechanics (QM) to determine how the choice of electron-donating versus electron-withdrawing ligand impacts the CO2 binding strength, in the presence of a donating borane moiety. We also examine the role of the cation in CO2 binding, finding that the ion position relative to the bound CO2 dramatically alters binding strength. We find that the BoPh with two ethyl ligands Li[Et2PBH3] leads to ΔG = -24.0 kcal/mol upon CO2 binding while Li[Ph2PBH3] leads to ΔG = -12.8 kcal/mol. We synthesized the BoPh with two phenyl ligands Li[Ph2PBH3] to validate the QM-predicted stability and predicted pKa.We have developed a class of phosphido-boranes (BoPh's) with formula X+[R2PBH3-] that bind CO2 with exceptional strength (ΔG = -8.2 to -24.0 kcal/mol) at ambient conditions. We use quantum mechanics (QM) to determine how the choice of electron-donating versus electron-withdrawing ligand impacts the CO2 binding strength, in the presence of a donating borane moiety. We also examine the role of the cation in CO2 binding, finding that the ion position relative to the bound CO2 dramatically alters binding strength. We find that the BoPh with two ethyl ligands Li[Et2PBH3] leads to ΔG = -24.0 kcal/mol upon CO2 binding while Li[Ph2PBH3] leads to ΔG = -12.8 kcal/mol. We synthesized the BoPh with two phenyl ligands Li[Ph2PBH3] to validate the QM-predicted stability and predicted pKa.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.4c02484</identifier><language>eng</language><ispartof>The journal of physical chemistry letters, 2024-10, Vol.15 (43), p.10909</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Riasati, Aarya D</creatorcontrib><creatorcontrib>Musgrave Iii, Charles B</creatorcontrib><creatorcontrib>Yeboah, Nathaniel</creatorcontrib><creatorcontrib>Prokofjevs, Aleksandrs</creatorcontrib><creatorcontrib>Goddard Iii, William A</creatorcontrib><title>Low pKa Phosphido-Boranes Capture Carbon Dioxide with Exceptional Strength: DFT Predictions Followed by Experimental Validation</title><title>The journal of physical chemistry letters</title><description>We have developed a class of phosphido-boranes (BoPh's) with formula X+[R2PBH3-] that bind CO2 with exceptional strength (ΔG = -8.2 to -24.0 kcal/mol) at ambient conditions. We use quantum mechanics (QM) to determine how the choice of electron-donating versus electron-withdrawing ligand impacts the CO2 binding strength, in the presence of a donating borane moiety. We also examine the role of the cation in CO2 binding, finding that the ion position relative to the bound CO2 dramatically alters binding strength. We find that the BoPh with two ethyl ligands Li[Et2PBH3] leads to ΔG = -24.0 kcal/mol upon CO2 binding while Li[Ph2PBH3] leads to ΔG = -12.8 kcal/mol. We synthesized the BoPh with two phenyl ligands Li[Ph2PBH3] to validate the QM-predicted stability and predicted pKa.We have developed a class of phosphido-boranes (BoPh's) with formula X+[R2PBH3-] that bind CO2 with exceptional strength (ΔG = -8.2 to -24.0 kcal/mol) at ambient conditions. We use quantum mechanics (QM) to determine how the choice of electron-donating versus electron-withdrawing ligand impacts the CO2 binding strength, in the presence of a donating borane moiety. We also examine the role of the cation in CO2 binding, finding that the ion position relative to the bound CO2 dramatically alters binding strength. We find that the BoPh with two ethyl ligands Li[Et2PBH3] leads to ΔG = -24.0 kcal/mol upon CO2 binding while Li[Ph2PBH3] leads to ΔG = -12.8 kcal/mol. We synthesized the BoPh with two phenyl ligands Li[Ph2PBH3] to validate the QM-predicted stability and predicted pKa.</description><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqVjrFOwzAURS0EEqXwBSxvZEmw00BSRtpGSHSoRMVauc6DuHL9jO0oZeLX60oMrEznSvce6TJ2K3gueCHupQr5zimDMeal4kVZl2dsJKZlnVWifjj_ky_ZVQg7zh-nvK5G7GdJA7hXCauOgut0S9kzeWkxwEy62HtM9FuyMNd00C3CoGMHi4NCFzVZaeAterSfsXuCebOGlcdWq1MVoCFjaMAWtt_JcOj1Hm1Myrs0upWn0TW7-JAm4M0vx-yuWaxnL5nz9NVjiJu9DgqNSZeoD5uJKNJ3UVbV5B_TI-VdXVA</recordid><startdate>20241031</startdate><enddate>20241031</enddate><creator>Riasati, Aarya D</creator><creator>Musgrave Iii, Charles B</creator><creator>Yeboah, Nathaniel</creator><creator>Prokofjevs, Aleksandrs</creator><creator>Goddard Iii, William A</creator><scope>7X8</scope></search><sort><creationdate>20241031</creationdate><title>Low pKa Phosphido-Boranes Capture Carbon Dioxide with Exceptional Strength: DFT Predictions Followed by Experimental Validation</title><author>Riasati, Aarya D ; Musgrave Iii, Charles B ; Yeboah, Nathaniel ; Prokofjevs, Aleksandrs ; Goddard Iii, William A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_31200614773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Riasati, Aarya D</creatorcontrib><creatorcontrib>Musgrave Iii, Charles B</creatorcontrib><creatorcontrib>Yeboah, Nathaniel</creatorcontrib><creatorcontrib>Prokofjevs, Aleksandrs</creatorcontrib><creatorcontrib>Goddard Iii, William A</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Riasati, Aarya D</au><au>Musgrave Iii, Charles B</au><au>Yeboah, Nathaniel</au><au>Prokofjevs, Aleksandrs</au><au>Goddard Iii, William A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low pKa Phosphido-Boranes Capture Carbon Dioxide with Exceptional Strength: DFT Predictions Followed by Experimental Validation</atitle><jtitle>The journal of physical chemistry letters</jtitle><date>2024-10-31</date><risdate>2024</risdate><volume>15</volume><issue>43</issue><spage>10909</spage><pages>10909-</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>We have developed a class of phosphido-boranes (BoPh's) with formula X+[R2PBH3-] that bind CO2 with exceptional strength (ΔG = -8.2 to -24.0 kcal/mol) at ambient conditions. We use quantum mechanics (QM) to determine how the choice of electron-donating versus electron-withdrawing ligand impacts the CO2 binding strength, in the presence of a donating borane moiety. We also examine the role of the cation in CO2 binding, finding that the ion position relative to the bound CO2 dramatically alters binding strength. We find that the BoPh with two ethyl ligands Li[Et2PBH3] leads to ΔG = -24.0 kcal/mol upon CO2 binding while Li[Ph2PBH3] leads to ΔG = -12.8 kcal/mol. We synthesized the BoPh with two phenyl ligands Li[Ph2PBH3] to validate the QM-predicted stability and predicted pKa.We have developed a class of phosphido-boranes (BoPh's) with formula X+[R2PBH3-] that bind CO2 with exceptional strength (ΔG = -8.2 to -24.0 kcal/mol) at ambient conditions. We use quantum mechanics (QM) to determine how the choice of electron-donating versus electron-withdrawing ligand impacts the CO2 binding strength, in the presence of a donating borane moiety. We also examine the role of the cation in CO2 binding, finding that the ion position relative to the bound CO2 dramatically alters binding strength. We find that the BoPh with two ethyl ligands Li[Et2PBH3] leads to ΔG = -24.0 kcal/mol upon CO2 binding while Li[Ph2PBH3] leads to ΔG = -12.8 kcal/mol. We synthesized the BoPh with two phenyl ligands Li[Ph2PBH3] to validate the QM-predicted stability and predicted pKa.</abstract><doi>10.1021/acs.jpclett.4c02484</doi></addata></record>
fulltext fulltext
identifier ISSN: 1948-7185
ispartof The journal of physical chemistry letters, 2024-10, Vol.15 (43), p.10909
issn 1948-7185
1948-7185
language eng
recordid cdi_proquest_miscellaneous_3120061477
source ACS Publications
title Low pKa Phosphido-Boranes Capture Carbon Dioxide with Exceptional Strength: DFT Predictions Followed by Experimental Validation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T08%3A02%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%20pKa%20Phosphido-Boranes%20Capture%20Carbon%20Dioxide%20with%20Exceptional%20Strength:%20DFT%20Predictions%20Followed%20by%20Experimental%20Validation&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Riasati,%20Aarya%20D&rft.date=2024-10-31&rft.volume=15&rft.issue=43&rft.spage=10909&rft.pages=10909-&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.4c02484&rft_dat=%3Cproquest%3E3120061477%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3120061477&rft_id=info:pmid/&rfr_iscdi=true