Finding the E-channel proton loading sites by calculating the ensemble of protonation microstates

The aerobic electron transfer chain builds a proton gradient by proton coupled electron transfer reactions through a series of proteins. Complex I is the first enzyme in the sequence. Here transfer of two electrons from NADH to quinone yields four protons pumped from the membrane N- (negative, highe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochimica et biophysica acta. Bioenergetics 2025-01, Vol.1866 (1), p.149518, Article 149518
Hauptverfasser: Uddin, Md. Raihan, Khaniya, Umesh, Gupta, Chitrak, Mao, Junjun, Ranepura, Gehan A., Wei, Rongmei Judy, Ortiz-Soto, Jose, Singharoy, Abhishek, Gunner, M.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 149518
container_title Biochimica et biophysica acta. Bioenergetics
container_volume 1866
creator Uddin, Md. Raihan
Khaniya, Umesh
Gupta, Chitrak
Mao, Junjun
Ranepura, Gehan A.
Wei, Rongmei Judy
Ortiz-Soto, Jose
Singharoy, Abhishek
Gunner, M.R.
description The aerobic electron transfer chain builds a proton gradient by proton coupled electron transfer reactions through a series of proteins. Complex I is the first enzyme in the sequence. Here transfer of two electrons from NADH to quinone yields four protons pumped from the membrane N- (negative, higher pH) side to the P- (positive, lower pH) side. Protons move through three linear antiporter paths, with a few amino acids and waters providing the route; and through the E-channel, a complex of competing paths, with clusters of interconnected protonatable residues. Proton loading sites (PLS) transiently bind protons as they are transported from N- to P-compartments. PLS can be individual residues or extended clusters of residues. The program MCCE uses Monte Carlos sampling to analyze the E-channel proton binding in equilibrium with individual Molecular Dynamics snapshots from trajectories of Thermus thermuphillus Complex I in the apo, quinone and quinol bound states. At pH 7, the five E-channel subunits (Nqo4, Nqo7, Nqo8, Nqo10, and Nqo11) take >25,000 protonation microstates, each with different residues protonated. The microstate explosion is tamed by analyzing interconnected clusters of residues along the proton transfer paths. A proton is bound and released from a cluster of five coupled residues on the protein N-side and to six coupled residues in the protein center. Loaded microstates bind protons to sites closer to the P-side in the forward pumping direction. MCCE microstate analysis identifies strongly coupled proton binding amongst individual residues in the two PLS clusters. •MCCE calculates protonation states in Complex I using MD trajectory snapshots.•Two proton loading sites (PLS) were identified in Complex I E-channel.•A proton binds to five residues N-side and six in center, forming two PLS.•MCCE microstates show proton binding in PLS clusters with strong residue coupling.•Center PLS loads protons with quinone; N-side loads more in apo or MQH2.
doi_str_mv 10.1016/j.bbabio.2024.149518
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3120057878</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0005272824004882</els_id><sourcerecordid>3120057878</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-520d651df14e6c943af113b843dd5921c348b84ef81addd5e479953e90b23d903</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqXwBwhlySbBryT2BglVLSBVYgNry7En1FUeJXaR-ve4pGXJyrLnHs_MQeiW4IxgUjxssqrSlesziinPCJc5EWdoSkQpU1rk-BxNMcZ5SksqJujK-w2OGKfsEk2Y5JyWgk-RXrrOuu4zCWtIFqlZ666DJtkOfei7pOn1b9G7AD6p9onRjdk1OpwI6Dy0VQNJXx-ZWItg68zQ-6Ajdo0uat14uDmeM_SxXLzPX9LV2_Pr_GmVGirKkOYU2yIntiYcCiM50zUhrBKcWZtLSgzjIt6gFkTb-AS8lDJnIHFFmZWYzdD9-G-c42sHPqjWeQNNozvod14xQqOOUpQiRvkYPQzpB6jVdnCtHvaKYHWQqzZqlKsOctUoN2J3xw67qgX7B51sxsDjGIC457eDQXnjoDNg3QAmKNu7_zv8AMehjRU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120057878</pqid></control><display><type>article</type><title>Finding the E-channel proton loading sites by calculating the ensemble of protonation microstates</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Uddin, Md. Raihan ; Khaniya, Umesh ; Gupta, Chitrak ; Mao, Junjun ; Ranepura, Gehan A. ; Wei, Rongmei Judy ; Ortiz-Soto, Jose ; Singharoy, Abhishek ; Gunner, M.R.</creator><creatorcontrib>Uddin, Md. Raihan ; Khaniya, Umesh ; Gupta, Chitrak ; Mao, Junjun ; Ranepura, Gehan A. ; Wei, Rongmei Judy ; Ortiz-Soto, Jose ; Singharoy, Abhishek ; Gunner, M.R.</creatorcontrib><description>The aerobic electron transfer chain builds a proton gradient by proton coupled electron transfer reactions through a series of proteins. Complex I is the first enzyme in the sequence. Here transfer of two electrons from NADH to quinone yields four protons pumped from the membrane N- (negative, higher pH) side to the P- (positive, lower pH) side. Protons move through three linear antiporter paths, with a few amino acids and waters providing the route; and through the E-channel, a complex of competing paths, with clusters of interconnected protonatable residues. Proton loading sites (PLS) transiently bind protons as they are transported from N- to P-compartments. PLS can be individual residues or extended clusters of residues. The program MCCE uses Monte Carlos sampling to analyze the E-channel proton binding in equilibrium with individual Molecular Dynamics snapshots from trajectories of Thermus thermuphillus Complex I in the apo, quinone and quinol bound states. At pH 7, the five E-channel subunits (Nqo4, Nqo7, Nqo8, Nqo10, and Nqo11) take &gt;25,000 protonation microstates, each with different residues protonated. The microstate explosion is tamed by analyzing interconnected clusters of residues along the proton transfer paths. A proton is bound and released from a cluster of five coupled residues on the protein N-side and to six coupled residues in the protein center. Loaded microstates bind protons to sites closer to the P-side in the forward pumping direction. MCCE microstate analysis identifies strongly coupled proton binding amongst individual residues in the two PLS clusters. •MCCE calculates protonation states in Complex I using MD trajectory snapshots.•Two proton loading sites (PLS) were identified in Complex I E-channel.•A proton binds to five residues N-side and six in center, forming two PLS.•MCCE microstates show proton binding in PLS clusters with strong residue coupling.•Center PLS loads protons with quinone; N-side loads more in apo or MQH2.</description><identifier>ISSN: 0005-2728</identifier><identifier>ISSN: 1879-2650</identifier><identifier>EISSN: 1879-2650</identifier><identifier>DOI: 10.1016/j.bbabio.2024.149518</identifier><identifier>PMID: 39442784</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Complex I ; Electron Transport ; Electron Transport Complex I - chemistry ; Electron Transport Complex I - metabolism ; Hydrogen-Ion Concentration ; MCCE ; Microstates ; Molecular Dynamics Simulation ; Proton pump ; Proton transfer ; Protons ; Thermus - enzymology</subject><ispartof>Biochimica et biophysica acta. Bioenergetics, 2025-01, Vol.1866 (1), p.149518, Article 149518</ispartof><rights>2024</rights><rights>Copyright © 2024. Published by Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-520d651df14e6c943af113b843dd5921c348b84ef81addd5e479953e90b23d903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bbabio.2024.149518$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39442784$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Uddin, Md. Raihan</creatorcontrib><creatorcontrib>Khaniya, Umesh</creatorcontrib><creatorcontrib>Gupta, Chitrak</creatorcontrib><creatorcontrib>Mao, Junjun</creatorcontrib><creatorcontrib>Ranepura, Gehan A.</creatorcontrib><creatorcontrib>Wei, Rongmei Judy</creatorcontrib><creatorcontrib>Ortiz-Soto, Jose</creatorcontrib><creatorcontrib>Singharoy, Abhishek</creatorcontrib><creatorcontrib>Gunner, M.R.</creatorcontrib><title>Finding the E-channel proton loading sites by calculating the ensemble of protonation microstates</title><title>Biochimica et biophysica acta. Bioenergetics</title><addtitle>Biochim Biophys Acta Bioenerg</addtitle><description>The aerobic electron transfer chain builds a proton gradient by proton coupled electron transfer reactions through a series of proteins. Complex I is the first enzyme in the sequence. Here transfer of two electrons from NADH to quinone yields four protons pumped from the membrane N- (negative, higher pH) side to the P- (positive, lower pH) side. Protons move through three linear antiporter paths, with a few amino acids and waters providing the route; and through the E-channel, a complex of competing paths, with clusters of interconnected protonatable residues. Proton loading sites (PLS) transiently bind protons as they are transported from N- to P-compartments. PLS can be individual residues or extended clusters of residues. The program MCCE uses Monte Carlos sampling to analyze the E-channel proton binding in equilibrium with individual Molecular Dynamics snapshots from trajectories of Thermus thermuphillus Complex I in the apo, quinone and quinol bound states. At pH 7, the five E-channel subunits (Nqo4, Nqo7, Nqo8, Nqo10, and Nqo11) take &gt;25,000 protonation microstates, each with different residues protonated. The microstate explosion is tamed by analyzing interconnected clusters of residues along the proton transfer paths. A proton is bound and released from a cluster of five coupled residues on the protein N-side and to six coupled residues in the protein center. Loaded microstates bind protons to sites closer to the P-side in the forward pumping direction. MCCE microstate analysis identifies strongly coupled proton binding amongst individual residues in the two PLS clusters. •MCCE calculates protonation states in Complex I using MD trajectory snapshots.•Two proton loading sites (PLS) were identified in Complex I E-channel.•A proton binds to five residues N-side and six in center, forming two PLS.•MCCE microstates show proton binding in PLS clusters with strong residue coupling.•Center PLS loads protons with quinone; N-side loads more in apo or MQH2.</description><subject>Complex I</subject><subject>Electron Transport</subject><subject>Electron Transport Complex I - chemistry</subject><subject>Electron Transport Complex I - metabolism</subject><subject>Hydrogen-Ion Concentration</subject><subject>MCCE</subject><subject>Microstates</subject><subject>Molecular Dynamics Simulation</subject><subject>Proton pump</subject><subject>Proton transfer</subject><subject>Protons</subject><subject>Thermus - enzymology</subject><issn>0005-2728</issn><issn>1879-2650</issn><issn>1879-2650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtOwzAQRS0EoqXwBwhlySbBryT2BglVLSBVYgNry7En1FUeJXaR-ve4pGXJyrLnHs_MQeiW4IxgUjxssqrSlesziinPCJc5EWdoSkQpU1rk-BxNMcZ5SksqJujK-w2OGKfsEk2Y5JyWgk-RXrrOuu4zCWtIFqlZ666DJtkOfei7pOn1b9G7AD6p9onRjdk1OpwI6Dy0VQNJXx-ZWItg68zQ-6Ajdo0uat14uDmeM_SxXLzPX9LV2_Pr_GmVGirKkOYU2yIntiYcCiM50zUhrBKcWZtLSgzjIt6gFkTb-AS8lDJnIHFFmZWYzdD9-G-c42sHPqjWeQNNozvod14xQqOOUpQiRvkYPQzpB6jVdnCtHvaKYHWQqzZqlKsOctUoN2J3xw67qgX7B51sxsDjGIC457eDQXnjoDNg3QAmKNu7_zv8AMehjRU</recordid><startdate>20250101</startdate><enddate>20250101</enddate><creator>Uddin, Md. Raihan</creator><creator>Khaniya, Umesh</creator><creator>Gupta, Chitrak</creator><creator>Mao, Junjun</creator><creator>Ranepura, Gehan A.</creator><creator>Wei, Rongmei Judy</creator><creator>Ortiz-Soto, Jose</creator><creator>Singharoy, Abhishek</creator><creator>Gunner, M.R.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20250101</creationdate><title>Finding the E-channel proton loading sites by calculating the ensemble of protonation microstates</title><author>Uddin, Md. Raihan ; Khaniya, Umesh ; Gupta, Chitrak ; Mao, Junjun ; Ranepura, Gehan A. ; Wei, Rongmei Judy ; Ortiz-Soto, Jose ; Singharoy, Abhishek ; Gunner, M.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-520d651df14e6c943af113b843dd5921c348b84ef81addd5e479953e90b23d903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Complex I</topic><topic>Electron Transport</topic><topic>Electron Transport Complex I - chemistry</topic><topic>Electron Transport Complex I - metabolism</topic><topic>Hydrogen-Ion Concentration</topic><topic>MCCE</topic><topic>Microstates</topic><topic>Molecular Dynamics Simulation</topic><topic>Proton pump</topic><topic>Proton transfer</topic><topic>Protons</topic><topic>Thermus - enzymology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uddin, Md. Raihan</creatorcontrib><creatorcontrib>Khaniya, Umesh</creatorcontrib><creatorcontrib>Gupta, Chitrak</creatorcontrib><creatorcontrib>Mao, Junjun</creatorcontrib><creatorcontrib>Ranepura, Gehan A.</creatorcontrib><creatorcontrib>Wei, Rongmei Judy</creatorcontrib><creatorcontrib>Ortiz-Soto, Jose</creatorcontrib><creatorcontrib>Singharoy, Abhishek</creatorcontrib><creatorcontrib>Gunner, M.R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biochimica et biophysica acta. Bioenergetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Uddin, Md. Raihan</au><au>Khaniya, Umesh</au><au>Gupta, Chitrak</au><au>Mao, Junjun</au><au>Ranepura, Gehan A.</au><au>Wei, Rongmei Judy</au><au>Ortiz-Soto, Jose</au><au>Singharoy, Abhishek</au><au>Gunner, M.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finding the E-channel proton loading sites by calculating the ensemble of protonation microstates</atitle><jtitle>Biochimica et biophysica acta. Bioenergetics</jtitle><addtitle>Biochim Biophys Acta Bioenerg</addtitle><date>2025-01-01</date><risdate>2025</risdate><volume>1866</volume><issue>1</issue><spage>149518</spage><pages>149518-</pages><artnum>149518</artnum><issn>0005-2728</issn><issn>1879-2650</issn><eissn>1879-2650</eissn><abstract>The aerobic electron transfer chain builds a proton gradient by proton coupled electron transfer reactions through a series of proteins. Complex I is the first enzyme in the sequence. Here transfer of two electrons from NADH to quinone yields four protons pumped from the membrane N- (negative, higher pH) side to the P- (positive, lower pH) side. Protons move through three linear antiporter paths, with a few amino acids and waters providing the route; and through the E-channel, a complex of competing paths, with clusters of interconnected protonatable residues. Proton loading sites (PLS) transiently bind protons as they are transported from N- to P-compartments. PLS can be individual residues or extended clusters of residues. The program MCCE uses Monte Carlos sampling to analyze the E-channel proton binding in equilibrium with individual Molecular Dynamics snapshots from trajectories of Thermus thermuphillus Complex I in the apo, quinone and quinol bound states. At pH 7, the five E-channel subunits (Nqo4, Nqo7, Nqo8, Nqo10, and Nqo11) take &gt;25,000 protonation microstates, each with different residues protonated. The microstate explosion is tamed by analyzing interconnected clusters of residues along the proton transfer paths. A proton is bound and released from a cluster of five coupled residues on the protein N-side and to six coupled residues in the protein center. Loaded microstates bind protons to sites closer to the P-side in the forward pumping direction. MCCE microstate analysis identifies strongly coupled proton binding amongst individual residues in the two PLS clusters. •MCCE calculates protonation states in Complex I using MD trajectory snapshots.•Two proton loading sites (PLS) were identified in Complex I E-channel.•A proton binds to five residues N-side and six in center, forming two PLS.•MCCE microstates show proton binding in PLS clusters with strong residue coupling.•Center PLS loads protons with quinone; N-side loads more in apo or MQH2.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>39442784</pmid><doi>10.1016/j.bbabio.2024.149518</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0005-2728
ispartof Biochimica et biophysica acta. Bioenergetics, 2025-01, Vol.1866 (1), p.149518, Article 149518
issn 0005-2728
1879-2650
1879-2650
language eng
recordid cdi_proquest_miscellaneous_3120057878
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Complex I
Electron Transport
Electron Transport Complex I - chemistry
Electron Transport Complex I - metabolism
Hydrogen-Ion Concentration
MCCE
Microstates
Molecular Dynamics Simulation
Proton pump
Proton transfer
Protons
Thermus - enzymology
title Finding the E-channel proton loading sites by calculating the ensemble of protonation microstates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A49%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finding%20the%20E-channel%20proton%20loading%20sites%20by%20calculating%20the%20ensemble%20of%20protonation%20microstates&rft.jtitle=Biochimica%20et%20biophysica%20acta.%20Bioenergetics&rft.au=Uddin,%20Md.%20Raihan&rft.date=2025-01-01&rft.volume=1866&rft.issue=1&rft.spage=149518&rft.pages=149518-&rft.artnum=149518&rft.issn=0005-2728&rft.eissn=1879-2650&rft_id=info:doi/10.1016/j.bbabio.2024.149518&rft_dat=%3Cproquest_cross%3E3120057878%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3120057878&rft_id=info:pmid/39442784&rft_els_id=S0005272824004882&rfr_iscdi=true