In-depth investigation of the complex pathophysiological mechanisms between diabetes and ischemic stroke through gene expression and regulatory network analysis

•Gene expression analysis identifies key biomarkers linking diabetes and ischemic stroke (IS).•DEG analysis reveals 307 upregulated and 156 downregulated genes in both diabetes and IS datasets.•Enrichment analysis highlights immune response and inflammation pathways in diabetes and IS comorbidity.•P...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain research 2024-12, Vol.1845, p.149276, Article 149276
Hauptverfasser: Lin, Ling, Zhang, Yuanxin, Zeng, Fengshan, Zhu, Chanyan, Guo, Chunmao, Huang, Haixiong, Jin, Hanna, He, Huahua, Chen, Shaolan, Zhou, Jinyan, Chen, Yao, Xu, Yuqian, Li, Dongqi, Yu, Wenlin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 149276
container_title Brain research
container_volume 1845
creator Lin, Ling
Zhang, Yuanxin
Zeng, Fengshan
Zhu, Chanyan
Guo, Chunmao
Huang, Haixiong
Jin, Hanna
He, Huahua
Chen, Shaolan
Zhou, Jinyan
Chen, Yao
Xu, Yuqian
Li, Dongqi
Yu, Wenlin
description •Gene expression analysis identifies key biomarkers linking diabetes and ischemic stroke (IS).•DEG analysis reveals 307 upregulated and 156 downregulated genes in both diabetes and IS datasets.•Enrichment analysis highlights immune response and inflammation pathways in diabetes and IS comorbidity.•PPI network reveals hub genes TLR2, TLR4, HDAC1, and ITGAM central to immune and inflammatory pathways.•Transcription factor analysis identifies RELA, SPI1, STAT3, and SP1 as potential therapeutic targets. This study explores the intricate relationship between diabetes and ischemic stroke (IS) through gene expression analysis and regulatory network investigation to identify potential biomarkers and therapeutic targets. Using datasets from the Gene Expression Omnibus (GEO) database, differential gene analysis was conducted on GSE43950 (diabetes) and GSE16561 (IS), revealing overlapping differentially expressed genes (DEGs). Functional enrichment analysis, Protein-Protein Interaction (PPI) network construction, and hub gene identification were performed, followed by validation in independent datasets (GSE156035 and GSE58294). The analysis identified 307 upregulated and 156 downregulated overlapping DEGs with significant enrichment in GO and KEGG pathways. Key hub genes (TLR2, TLR4, HDAC1, ITGAM) were identified through a PPI network (257 nodes, 456 interactions), with their roles in immune and inflammatory responses highlighted through GeneMANIA analysis. TRRUST-based transcription factor enrichment analysis revealed regulatory links involving RELA, SPI1, STAT3, and SP1. Differential expression analysis confirmed that RELA and SPI1 were upregulated in diabetes, while SPI1, STAT3, and SP1 were linked to IS. These transcription factors are involved in regulating immunity and inflammation, providing insights into the molecular mechanisms underlying diabetes-IS comorbidity. This bioinformatics-driven approach offers new understanding of the gene interactions and pathways involved, paving the way for potential therapeutic targets.
doi_str_mv 10.1016/j.brainres.2024.149276
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3120056678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006899324005304</els_id><sourcerecordid>3120056678</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-f143c5d755b035ab1f2bec4cd640f225a0f884a0a4c0ac66fcdd40f1d8e4128f3</originalsourceid><addsrcrecordid>eNqFkcFu3CAURVHVqpmk_YWIZTeeAMaMvWsVtUmkSN0ka4ThYTOxwQWcZv6mn1pGk3TbFfA4714eF6FLSraUUHG13_ZROR8hbRlhfEt5x3biHdrQdscqwTh5jzaEEFG1XVefofOU9uVY1x35iM7qjnMmeLNBf-58ZWDJI3b-GVJ2g8oueBwsziNgHeZlghe8qDyGZTwkF6YwOK0mPIMelXdpTriH_BvAY-NU2ULCyhvskh5hdhqnHMMTFLkY1mHEA3jA8LKUp6ej05GNMKyTyiEesC9aIT6VspqKXfqEPlg1Jfj8ul6gxx_fH65vq_ufN3fX3-4rzXiTK0t5rRuza5qe1I3qqWU9aK6N4MQy1ihi25YrorgmSgthtTHlhpoWOGWtrS_Ql5PuEsOvtfyEnMsEME3KQ1iTrCkjpBFi1xZUnFAdQ0oRrFyim1U8SErkMR25l2_pyGM68pROabx89Vj7Gcy_trc4CvD1BECZ9NlBlEk78BqMi6CzNMH9z-Mvc4iqKw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120056678</pqid></control><display><type>article</type><title>In-depth investigation of the complex pathophysiological mechanisms between diabetes and ischemic stroke through gene expression and regulatory network analysis</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Lin, Ling ; Zhang, Yuanxin ; Zeng, Fengshan ; Zhu, Chanyan ; Guo, Chunmao ; Huang, Haixiong ; Jin, Hanna ; He, Huahua ; Chen, Shaolan ; Zhou, Jinyan ; Chen, Yao ; Xu, Yuqian ; Li, Dongqi ; Yu, Wenlin</creator><creatorcontrib>Lin, Ling ; Zhang, Yuanxin ; Zeng, Fengshan ; Zhu, Chanyan ; Guo, Chunmao ; Huang, Haixiong ; Jin, Hanna ; He, Huahua ; Chen, Shaolan ; Zhou, Jinyan ; Chen, Yao ; Xu, Yuqian ; Li, Dongqi ; Yu, Wenlin</creatorcontrib><description>•Gene expression analysis identifies key biomarkers linking diabetes and ischemic stroke (IS).•DEG analysis reveals 307 upregulated and 156 downregulated genes in both diabetes and IS datasets.•Enrichment analysis highlights immune response and inflammation pathways in diabetes and IS comorbidity.•PPI network reveals hub genes TLR2, TLR4, HDAC1, and ITGAM central to immune and inflammatory pathways.•Transcription factor analysis identifies RELA, SPI1, STAT3, and SP1 as potential therapeutic targets. This study explores the intricate relationship between diabetes and ischemic stroke (IS) through gene expression analysis and regulatory network investigation to identify potential biomarkers and therapeutic targets. Using datasets from the Gene Expression Omnibus (GEO) database, differential gene analysis was conducted on GSE43950 (diabetes) and GSE16561 (IS), revealing overlapping differentially expressed genes (DEGs). Functional enrichment analysis, Protein-Protein Interaction (PPI) network construction, and hub gene identification were performed, followed by validation in independent datasets (GSE156035 and GSE58294). The analysis identified 307 upregulated and 156 downregulated overlapping DEGs with significant enrichment in GO and KEGG pathways. Key hub genes (TLR2, TLR4, HDAC1, ITGAM) were identified through a PPI network (257 nodes, 456 interactions), with their roles in immune and inflammatory responses highlighted through GeneMANIA analysis. TRRUST-based transcription factor enrichment analysis revealed regulatory links involving RELA, SPI1, STAT3, and SP1. Differential expression analysis confirmed that RELA and SPI1 were upregulated in diabetes, while SPI1, STAT3, and SP1 were linked to IS. These transcription factors are involved in regulating immunity and inflammation, providing insights into the molecular mechanisms underlying diabetes-IS comorbidity. This bioinformatics-driven approach offers new understanding of the gene interactions and pathways involved, paving the way for potential therapeutic targets.</description><identifier>ISSN: 0006-8993</identifier><identifier>ISSN: 1872-6240</identifier><identifier>EISSN: 1872-6240</identifier><identifier>DOI: 10.1016/j.brainres.2024.149276</identifier><identifier>PMID: 39442645</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Bioinformatic analysis ; Diabetes ; Diabetes Mellitus - genetics ; Diabetes Mellitus - metabolism ; Differentially expressed genes analysis ; Gene Expression - genetics ; Gene Expression Profiling - methods ; Gene Regulatory Networks - genetics ; Humans ; Ischemic stroke ; Ischemic Stroke - genetics ; Ischemic Stroke - metabolism ; Protein Interaction Maps - genetics ; The gene expression omnibus</subject><ispartof>Brain research, 2024-12, Vol.1845, p.149276, Article 149276</ispartof><rights>2024 Elsevier B.V.</rights><rights>Copyright © 2024 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-f143c5d755b035ab1f2bec4cd640f225a0f884a0a4c0ac66fcdd40f1d8e4128f3</cites><orcidid>0009-0003-3170-3278</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.brainres.2024.149276$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39442645$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Ling</creatorcontrib><creatorcontrib>Zhang, Yuanxin</creatorcontrib><creatorcontrib>Zeng, Fengshan</creatorcontrib><creatorcontrib>Zhu, Chanyan</creatorcontrib><creatorcontrib>Guo, Chunmao</creatorcontrib><creatorcontrib>Huang, Haixiong</creatorcontrib><creatorcontrib>Jin, Hanna</creatorcontrib><creatorcontrib>He, Huahua</creatorcontrib><creatorcontrib>Chen, Shaolan</creatorcontrib><creatorcontrib>Zhou, Jinyan</creatorcontrib><creatorcontrib>Chen, Yao</creatorcontrib><creatorcontrib>Xu, Yuqian</creatorcontrib><creatorcontrib>Li, Dongqi</creatorcontrib><creatorcontrib>Yu, Wenlin</creatorcontrib><title>In-depth investigation of the complex pathophysiological mechanisms between diabetes and ischemic stroke through gene expression and regulatory network analysis</title><title>Brain research</title><addtitle>Brain Res</addtitle><description>•Gene expression analysis identifies key biomarkers linking diabetes and ischemic stroke (IS).•DEG analysis reveals 307 upregulated and 156 downregulated genes in both diabetes and IS datasets.•Enrichment analysis highlights immune response and inflammation pathways in diabetes and IS comorbidity.•PPI network reveals hub genes TLR2, TLR4, HDAC1, and ITGAM central to immune and inflammatory pathways.•Transcription factor analysis identifies RELA, SPI1, STAT3, and SP1 as potential therapeutic targets. This study explores the intricate relationship between diabetes and ischemic stroke (IS) through gene expression analysis and regulatory network investigation to identify potential biomarkers and therapeutic targets. Using datasets from the Gene Expression Omnibus (GEO) database, differential gene analysis was conducted on GSE43950 (diabetes) and GSE16561 (IS), revealing overlapping differentially expressed genes (DEGs). Functional enrichment analysis, Protein-Protein Interaction (PPI) network construction, and hub gene identification were performed, followed by validation in independent datasets (GSE156035 and GSE58294). The analysis identified 307 upregulated and 156 downregulated overlapping DEGs with significant enrichment in GO and KEGG pathways. Key hub genes (TLR2, TLR4, HDAC1, ITGAM) were identified through a PPI network (257 nodes, 456 interactions), with their roles in immune and inflammatory responses highlighted through GeneMANIA analysis. TRRUST-based transcription factor enrichment analysis revealed regulatory links involving RELA, SPI1, STAT3, and SP1. Differential expression analysis confirmed that RELA and SPI1 were upregulated in diabetes, while SPI1, STAT3, and SP1 were linked to IS. These transcription factors are involved in regulating immunity and inflammation, providing insights into the molecular mechanisms underlying diabetes-IS comorbidity. This bioinformatics-driven approach offers new understanding of the gene interactions and pathways involved, paving the way for potential therapeutic targets.</description><subject>Bioinformatic analysis</subject><subject>Diabetes</subject><subject>Diabetes Mellitus - genetics</subject><subject>Diabetes Mellitus - metabolism</subject><subject>Differentially expressed genes analysis</subject><subject>Gene Expression - genetics</subject><subject>Gene Expression Profiling - methods</subject><subject>Gene Regulatory Networks - genetics</subject><subject>Humans</subject><subject>Ischemic stroke</subject><subject>Ischemic Stroke - genetics</subject><subject>Ischemic Stroke - metabolism</subject><subject>Protein Interaction Maps - genetics</subject><subject>The gene expression omnibus</subject><issn>0006-8993</issn><issn>1872-6240</issn><issn>1872-6240</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcFu3CAURVHVqpmk_YWIZTeeAMaMvWsVtUmkSN0ka4ThYTOxwQWcZv6mn1pGk3TbFfA4714eF6FLSraUUHG13_ZROR8hbRlhfEt5x3biHdrQdscqwTh5jzaEEFG1XVefofOU9uVY1x35iM7qjnMmeLNBf-58ZWDJI3b-GVJ2g8oueBwsziNgHeZlghe8qDyGZTwkF6YwOK0mPIMelXdpTriH_BvAY-NU2ULCyhvskh5hdhqnHMMTFLkY1mHEA3jA8LKUp6ej05GNMKyTyiEesC9aIT6VspqKXfqEPlg1Jfj8ul6gxx_fH65vq_ufN3fX3-4rzXiTK0t5rRuza5qe1I3qqWU9aK6N4MQy1ihi25YrorgmSgthtTHlhpoWOGWtrS_Ql5PuEsOvtfyEnMsEME3KQ1iTrCkjpBFi1xZUnFAdQ0oRrFyim1U8SErkMR25l2_pyGM68pROabx89Vj7Gcy_trc4CvD1BECZ9NlBlEk78BqMi6CzNMH9z-Mvc4iqKw</recordid><startdate>20241215</startdate><enddate>20241215</enddate><creator>Lin, Ling</creator><creator>Zhang, Yuanxin</creator><creator>Zeng, Fengshan</creator><creator>Zhu, Chanyan</creator><creator>Guo, Chunmao</creator><creator>Huang, Haixiong</creator><creator>Jin, Hanna</creator><creator>He, Huahua</creator><creator>Chen, Shaolan</creator><creator>Zhou, Jinyan</creator><creator>Chen, Yao</creator><creator>Xu, Yuqian</creator><creator>Li, Dongqi</creator><creator>Yu, Wenlin</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0003-3170-3278</orcidid></search><sort><creationdate>20241215</creationdate><title>In-depth investigation of the complex pathophysiological mechanisms between diabetes and ischemic stroke through gene expression and regulatory network analysis</title><author>Lin, Ling ; Zhang, Yuanxin ; Zeng, Fengshan ; Zhu, Chanyan ; Guo, Chunmao ; Huang, Haixiong ; Jin, Hanna ; He, Huahua ; Chen, Shaolan ; Zhou, Jinyan ; Chen, Yao ; Xu, Yuqian ; Li, Dongqi ; Yu, Wenlin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-f143c5d755b035ab1f2bec4cd640f225a0f884a0a4c0ac66fcdd40f1d8e4128f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bioinformatic analysis</topic><topic>Diabetes</topic><topic>Diabetes Mellitus - genetics</topic><topic>Diabetes Mellitus - metabolism</topic><topic>Differentially expressed genes analysis</topic><topic>Gene Expression - genetics</topic><topic>Gene Expression Profiling - methods</topic><topic>Gene Regulatory Networks - genetics</topic><topic>Humans</topic><topic>Ischemic stroke</topic><topic>Ischemic Stroke - genetics</topic><topic>Ischemic Stroke - metabolism</topic><topic>Protein Interaction Maps - genetics</topic><topic>The gene expression omnibus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Ling</creatorcontrib><creatorcontrib>Zhang, Yuanxin</creatorcontrib><creatorcontrib>Zeng, Fengshan</creatorcontrib><creatorcontrib>Zhu, Chanyan</creatorcontrib><creatorcontrib>Guo, Chunmao</creatorcontrib><creatorcontrib>Huang, Haixiong</creatorcontrib><creatorcontrib>Jin, Hanna</creatorcontrib><creatorcontrib>He, Huahua</creatorcontrib><creatorcontrib>Chen, Shaolan</creatorcontrib><creatorcontrib>Zhou, Jinyan</creatorcontrib><creatorcontrib>Chen, Yao</creatorcontrib><creatorcontrib>Xu, Yuqian</creatorcontrib><creatorcontrib>Li, Dongqi</creatorcontrib><creatorcontrib>Yu, Wenlin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Brain research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Ling</au><au>Zhang, Yuanxin</au><au>Zeng, Fengshan</au><au>Zhu, Chanyan</au><au>Guo, Chunmao</au><au>Huang, Haixiong</au><au>Jin, Hanna</au><au>He, Huahua</au><au>Chen, Shaolan</au><au>Zhou, Jinyan</au><au>Chen, Yao</au><au>Xu, Yuqian</au><au>Li, Dongqi</au><au>Yu, Wenlin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In-depth investigation of the complex pathophysiological mechanisms between diabetes and ischemic stroke through gene expression and regulatory network analysis</atitle><jtitle>Brain research</jtitle><addtitle>Brain Res</addtitle><date>2024-12-15</date><risdate>2024</risdate><volume>1845</volume><spage>149276</spage><pages>149276-</pages><artnum>149276</artnum><issn>0006-8993</issn><issn>1872-6240</issn><eissn>1872-6240</eissn><abstract>•Gene expression analysis identifies key biomarkers linking diabetes and ischemic stroke (IS).•DEG analysis reveals 307 upregulated and 156 downregulated genes in both diabetes and IS datasets.•Enrichment analysis highlights immune response and inflammation pathways in diabetes and IS comorbidity.•PPI network reveals hub genes TLR2, TLR4, HDAC1, and ITGAM central to immune and inflammatory pathways.•Transcription factor analysis identifies RELA, SPI1, STAT3, and SP1 as potential therapeutic targets. This study explores the intricate relationship between diabetes and ischemic stroke (IS) through gene expression analysis and regulatory network investigation to identify potential biomarkers and therapeutic targets. Using datasets from the Gene Expression Omnibus (GEO) database, differential gene analysis was conducted on GSE43950 (diabetes) and GSE16561 (IS), revealing overlapping differentially expressed genes (DEGs). Functional enrichment analysis, Protein-Protein Interaction (PPI) network construction, and hub gene identification were performed, followed by validation in independent datasets (GSE156035 and GSE58294). The analysis identified 307 upregulated and 156 downregulated overlapping DEGs with significant enrichment in GO and KEGG pathways. Key hub genes (TLR2, TLR4, HDAC1, ITGAM) were identified through a PPI network (257 nodes, 456 interactions), with their roles in immune and inflammatory responses highlighted through GeneMANIA analysis. TRRUST-based transcription factor enrichment analysis revealed regulatory links involving RELA, SPI1, STAT3, and SP1. Differential expression analysis confirmed that RELA and SPI1 were upregulated in diabetes, while SPI1, STAT3, and SP1 were linked to IS. These transcription factors are involved in regulating immunity and inflammation, providing insights into the molecular mechanisms underlying diabetes-IS comorbidity. This bioinformatics-driven approach offers new understanding of the gene interactions and pathways involved, paving the way for potential therapeutic targets.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>39442645</pmid><doi>10.1016/j.brainres.2024.149276</doi><orcidid>https://orcid.org/0009-0003-3170-3278</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0006-8993
ispartof Brain research, 2024-12, Vol.1845, p.149276, Article 149276
issn 0006-8993
1872-6240
1872-6240
language eng
recordid cdi_proquest_miscellaneous_3120056678
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Bioinformatic analysis
Diabetes
Diabetes Mellitus - genetics
Diabetes Mellitus - metabolism
Differentially expressed genes analysis
Gene Expression - genetics
Gene Expression Profiling - methods
Gene Regulatory Networks - genetics
Humans
Ischemic stroke
Ischemic Stroke - genetics
Ischemic Stroke - metabolism
Protein Interaction Maps - genetics
The gene expression omnibus
title In-depth investigation of the complex pathophysiological mechanisms between diabetes and ischemic stroke through gene expression and regulatory network analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A00%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In-depth%20investigation%20of%20the%20complex%20pathophysiological%20mechanisms%20between%20diabetes%20and%20ischemic%20stroke%20through%20gene%20expression%20and%20regulatory%20network%20analysis&rft.jtitle=Brain%20research&rft.au=Lin,%20Ling&rft.date=2024-12-15&rft.volume=1845&rft.spage=149276&rft.pages=149276-&rft.artnum=149276&rft.issn=0006-8993&rft.eissn=1872-6240&rft_id=info:doi/10.1016/j.brainres.2024.149276&rft_dat=%3Cproquest_cross%3E3120056678%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3120056678&rft_id=info:pmid/39442645&rft_els_id=S0006899324005304&rfr_iscdi=true