Exploring the molecular pathways of the activation process in PPARγ recurrent bladder cancer mutants

The intricate involvement of Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) in glucose homeostasis and adipogenesis is well-established. However, its role in cancer, particularly luminal bladder cancer, remains debated. The overexpression and activation of PPARγ are implicated in tumorigen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2024-10, Vol.161 (16)
Hauptverfasser: de Oliveira, Vinícius M., Malospirito, Caique C., da Silva, Fernando B., Videira, Natália B., Dias, Marieli M. G., Sanches, Murilo N., Leite, Vitor B. P., Figueira, Ana Carolina M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 16
container_start_page
container_title The Journal of chemical physics
container_volume 161
creator de Oliveira, Vinícius M.
Malospirito, Caique C.
da Silva, Fernando B.
Videira, Natália B.
Dias, Marieli M. G.
Sanches, Murilo N.
Leite, Vitor B. P.
Figueira, Ana Carolina M.
description The intricate involvement of Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) in glucose homeostasis and adipogenesis is well-established. However, its role in cancer, particularly luminal bladder cancer, remains debated. The overexpression and activation of PPARγ are implicated in tumorigenesis. Specific gain-of-function mutations (M280I, I290M, and T475M) within the ligand-binding domain of PPARγ are associated with bladder cancer and receptor activation. The underlying molecular pathways prompted by these mutations remain unclear. We employed a dual-basin structure-based model (db-SBM) to explore the conformational dynamics between the inactive and active states of PPARγ and examined the effects of the M280I, I290M, and T475M mutations. Our findings, consistent with the existing literature, reveal heightened ligand-independent transcriptional activity in the I290M and T475M mutants. Both mutants showed enhanced stabilization of the active state compared to the wild-type receptor, with the I290M mutation promoting a specific transition route, making it a prime candidate for further study. Electrostatic analysis identified residues K303 and E488 as pivotal in the I290M activation cascade. Biophysical assays confirmed that disrupting the K303–E488 interaction reduced the thermal stabilization characteristic of the I290M mutation. Our study demonstrates the predictive capabilities of combining simulation and cheminformatics methods, validated by biochemical experiments, to gain insights into molecular activation mechanisms and identify target residues for protein modulation.
doi_str_mv 10.1063/5.0232041
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_3119724834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3119724834</sourcerecordid><originalsourceid>FETCH-LOGICAL-c238t-672e08844eef0bf767afa8769ecddd045d1c051e299299da79c3337768d14d8f3</originalsourceid><addsrcrecordid>eNp9kMtKJTEQhoM46Bl14QtIwI0z0Fq5dCdZHsS5gKCIrpucpFpb-nJM0jo-l-8xzzTRc5yFC6GgFvXVT9VHyD6DYwaVOCmPgQsOkm2QGQNtClUZ2CQzAM4KU0G1Tb7GeA8ATHG5RbaFkRJUBTOCZ3-W3Rja4ZamO6T92KGbOhvo0qa7J_sc6di8TaxL7aNN7TjQZRgdxkjbgV5ezq_-vtCQl0LAIdFFZ73HQJ0dXG79lOyQ4i750tgu4t6675CbH2fXp7-K84ufv0_n54XjQqeiUhxBaykRG1g0qlK2sTo_g857D7L0zEHJkBuTy1tlnBBCqUp7Jr1uxA45WuXmEx8mjKnu2-iw6-yA4xRrwZjJBrSQGT38gN6PUxjydZniwkDJjc7UtxXlwhhjwKZehra34blmUL-6r8t67T6zB-vEadGj_0--y87A9xUQXZveVH6S9g9VKYv7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123905298</pqid></control><display><type>article</type><title>Exploring the molecular pathways of the activation process in PPARγ recurrent bladder cancer mutants</title><source>MEDLINE</source><source>AIP Journals Complete</source><creator>de Oliveira, Vinícius M. ; Malospirito, Caique C. ; da Silva, Fernando B. ; Videira, Natália B. ; Dias, Marieli M. G. ; Sanches, Murilo N. ; Leite, Vitor B. P. ; Figueira, Ana Carolina M.</creator><creatorcontrib>de Oliveira, Vinícius M. ; Malospirito, Caique C. ; da Silva, Fernando B. ; Videira, Natália B. ; Dias, Marieli M. G. ; Sanches, Murilo N. ; Leite, Vitor B. P. ; Figueira, Ana Carolina M.</creatorcontrib><description>The intricate involvement of Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) in glucose homeostasis and adipogenesis is well-established. However, its role in cancer, particularly luminal bladder cancer, remains debated. The overexpression and activation of PPARγ are implicated in tumorigenesis. Specific gain-of-function mutations (M280I, I290M, and T475M) within the ligand-binding domain of PPARγ are associated with bladder cancer and receptor activation. The underlying molecular pathways prompted by these mutations remain unclear. We employed a dual-basin structure-based model (db-SBM) to explore the conformational dynamics between the inactive and active states of PPARγ and examined the effects of the M280I, I290M, and T475M mutations. Our findings, consistent with the existing literature, reveal heightened ligand-independent transcriptional activity in the I290M and T475M mutants. Both mutants showed enhanced stabilization of the active state compared to the wild-type receptor, with the I290M mutation promoting a specific transition route, making it a prime candidate for further study. Electrostatic analysis identified residues K303 and E488 as pivotal in the I290M activation cascade. Biophysical assays confirmed that disrupting the K303–E488 interaction reduced the thermal stabilization characteristic of the I290M mutation. Our study demonstrates the predictive capabilities of combining simulation and cheminformatics methods, validated by biochemical experiments, to gain insights into molecular activation mechanisms and identify target residues for protein modulation.</description><identifier>ISSN: 0021-9606</identifier><identifier>ISSN: 1089-7690</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0232041</identifier><identifier>PMID: 39440760</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Activation analysis ; Bladder ; Bladder cancer ; Cancer ; Gain of Function Mutation ; Homeostasis ; Humans ; Ligands ; Molecular Dynamics Simulation ; Molecular structure ; Mutation ; PPAR gamma - chemistry ; PPAR gamma - genetics ; PPAR gamma - metabolism ; Receptors ; Residues ; Stabilization ; Thermal simulation ; Urinary Bladder Neoplasms - genetics ; Urinary Bladder Neoplasms - metabolism ; Urinary Bladder Neoplasms - pathology</subject><ispartof>The Journal of chemical physics, 2024-10, Vol.161 (16)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c238t-672e08844eef0bf767afa8769ecddd045d1c051e299299da79c3337768d14d8f3</cites><orcidid>0000-0001-9650-7989 ; 0000-0002-1741-1362 ; 0000-0002-0285-8700 ; 0000-0002-7023-8490 ; 0000-0003-0927-3825 ; 0000-0002-4184-8046 ; 0000-0003-0008-9079 ; 0000-0002-0246-8884</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0232041$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76127</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39440760$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de Oliveira, Vinícius M.</creatorcontrib><creatorcontrib>Malospirito, Caique C.</creatorcontrib><creatorcontrib>da Silva, Fernando B.</creatorcontrib><creatorcontrib>Videira, Natália B.</creatorcontrib><creatorcontrib>Dias, Marieli M. G.</creatorcontrib><creatorcontrib>Sanches, Murilo N.</creatorcontrib><creatorcontrib>Leite, Vitor B. P.</creatorcontrib><creatorcontrib>Figueira, Ana Carolina M.</creatorcontrib><title>Exploring the molecular pathways of the activation process in PPARγ recurrent bladder cancer mutants</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>The intricate involvement of Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) in glucose homeostasis and adipogenesis is well-established. However, its role in cancer, particularly luminal bladder cancer, remains debated. The overexpression and activation of PPARγ are implicated in tumorigenesis. Specific gain-of-function mutations (M280I, I290M, and T475M) within the ligand-binding domain of PPARγ are associated with bladder cancer and receptor activation. The underlying molecular pathways prompted by these mutations remain unclear. We employed a dual-basin structure-based model (db-SBM) to explore the conformational dynamics between the inactive and active states of PPARγ and examined the effects of the M280I, I290M, and T475M mutations. Our findings, consistent with the existing literature, reveal heightened ligand-independent transcriptional activity in the I290M and T475M mutants. Both mutants showed enhanced stabilization of the active state compared to the wild-type receptor, with the I290M mutation promoting a specific transition route, making it a prime candidate for further study. Electrostatic analysis identified residues K303 and E488 as pivotal in the I290M activation cascade. Biophysical assays confirmed that disrupting the K303–E488 interaction reduced the thermal stabilization characteristic of the I290M mutation. Our study demonstrates the predictive capabilities of combining simulation and cheminformatics methods, validated by biochemical experiments, to gain insights into molecular activation mechanisms and identify target residues for protein modulation.</description><subject>Activation analysis</subject><subject>Bladder</subject><subject>Bladder cancer</subject><subject>Cancer</subject><subject>Gain of Function Mutation</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Ligands</subject><subject>Molecular Dynamics Simulation</subject><subject>Molecular structure</subject><subject>Mutation</subject><subject>PPAR gamma - chemistry</subject><subject>PPAR gamma - genetics</subject><subject>PPAR gamma - metabolism</subject><subject>Receptors</subject><subject>Residues</subject><subject>Stabilization</subject><subject>Thermal simulation</subject><subject>Urinary Bladder Neoplasms - genetics</subject><subject>Urinary Bladder Neoplasms - metabolism</subject><subject>Urinary Bladder Neoplasms - pathology</subject><issn>0021-9606</issn><issn>1089-7690</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtKJTEQhoM46Bl14QtIwI0z0Fq5dCdZHsS5gKCIrpucpFpb-nJM0jo-l-8xzzTRc5yFC6GgFvXVT9VHyD6DYwaVOCmPgQsOkm2QGQNtClUZ2CQzAM4KU0G1Tb7GeA8ATHG5RbaFkRJUBTOCZ3-W3Rja4ZamO6T92KGbOhvo0qa7J_sc6di8TaxL7aNN7TjQZRgdxkjbgV5ezq_-vtCQl0LAIdFFZ73HQJ0dXG79lOyQ4i750tgu4t6675CbH2fXp7-K84ufv0_n54XjQqeiUhxBaykRG1g0qlK2sTo_g857D7L0zEHJkBuTy1tlnBBCqUp7Jr1uxA45WuXmEx8mjKnu2-iw6-yA4xRrwZjJBrSQGT38gN6PUxjydZniwkDJjc7UtxXlwhhjwKZehra34blmUL-6r8t67T6zB-vEadGj_0--y87A9xUQXZveVH6S9g9VKYv7</recordid><startdate>20241028</startdate><enddate>20241028</enddate><creator>de Oliveira, Vinícius M.</creator><creator>Malospirito, Caique C.</creator><creator>da Silva, Fernando B.</creator><creator>Videira, Natália B.</creator><creator>Dias, Marieli M. G.</creator><creator>Sanches, Murilo N.</creator><creator>Leite, Vitor B. P.</creator><creator>Figueira, Ana Carolina M.</creator><general>American Institute of Physics</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9650-7989</orcidid><orcidid>https://orcid.org/0000-0002-1741-1362</orcidid><orcidid>https://orcid.org/0000-0002-0285-8700</orcidid><orcidid>https://orcid.org/0000-0002-7023-8490</orcidid><orcidid>https://orcid.org/0000-0003-0927-3825</orcidid><orcidid>https://orcid.org/0000-0002-4184-8046</orcidid><orcidid>https://orcid.org/0000-0003-0008-9079</orcidid><orcidid>https://orcid.org/0000-0002-0246-8884</orcidid></search><sort><creationdate>20241028</creationdate><title>Exploring the molecular pathways of the activation process in PPARγ recurrent bladder cancer mutants</title><author>de Oliveira, Vinícius M. ; Malospirito, Caique C. ; da Silva, Fernando B. ; Videira, Natália B. ; Dias, Marieli M. G. ; Sanches, Murilo N. ; Leite, Vitor B. P. ; Figueira, Ana Carolina M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c238t-672e08844eef0bf767afa8769ecddd045d1c051e299299da79c3337768d14d8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Activation analysis</topic><topic>Bladder</topic><topic>Bladder cancer</topic><topic>Cancer</topic><topic>Gain of Function Mutation</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Ligands</topic><topic>Molecular Dynamics Simulation</topic><topic>Molecular structure</topic><topic>Mutation</topic><topic>PPAR gamma - chemistry</topic><topic>PPAR gamma - genetics</topic><topic>PPAR gamma - metabolism</topic><topic>Receptors</topic><topic>Residues</topic><topic>Stabilization</topic><topic>Thermal simulation</topic><topic>Urinary Bladder Neoplasms - genetics</topic><topic>Urinary Bladder Neoplasms - metabolism</topic><topic>Urinary Bladder Neoplasms - pathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Oliveira, Vinícius M.</creatorcontrib><creatorcontrib>Malospirito, Caique C.</creatorcontrib><creatorcontrib>da Silva, Fernando B.</creatorcontrib><creatorcontrib>Videira, Natália B.</creatorcontrib><creatorcontrib>Dias, Marieli M. G.</creatorcontrib><creatorcontrib>Sanches, Murilo N.</creatorcontrib><creatorcontrib>Leite, Vitor B. P.</creatorcontrib><creatorcontrib>Figueira, Ana Carolina M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Oliveira, Vinícius M.</au><au>Malospirito, Caique C.</au><au>da Silva, Fernando B.</au><au>Videira, Natália B.</au><au>Dias, Marieli M. G.</au><au>Sanches, Murilo N.</au><au>Leite, Vitor B. P.</au><au>Figueira, Ana Carolina M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring the molecular pathways of the activation process in PPARγ recurrent bladder cancer mutants</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2024-10-28</date><risdate>2024</risdate><volume>161</volume><issue>16</issue><issn>0021-9606</issn><issn>1089-7690</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>The intricate involvement of Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) in glucose homeostasis and adipogenesis is well-established. However, its role in cancer, particularly luminal bladder cancer, remains debated. The overexpression and activation of PPARγ are implicated in tumorigenesis. Specific gain-of-function mutations (M280I, I290M, and T475M) within the ligand-binding domain of PPARγ are associated with bladder cancer and receptor activation. The underlying molecular pathways prompted by these mutations remain unclear. We employed a dual-basin structure-based model (db-SBM) to explore the conformational dynamics between the inactive and active states of PPARγ and examined the effects of the M280I, I290M, and T475M mutations. Our findings, consistent with the existing literature, reveal heightened ligand-independent transcriptional activity in the I290M and T475M mutants. Both mutants showed enhanced stabilization of the active state compared to the wild-type receptor, with the I290M mutation promoting a specific transition route, making it a prime candidate for further study. Electrostatic analysis identified residues K303 and E488 as pivotal in the I290M activation cascade. Biophysical assays confirmed that disrupting the K303–E488 interaction reduced the thermal stabilization characteristic of the I290M mutation. Our study demonstrates the predictive capabilities of combining simulation and cheminformatics methods, validated by biochemical experiments, to gain insights into molecular activation mechanisms and identify target residues for protein modulation.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>39440760</pmid><doi>10.1063/5.0232041</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9650-7989</orcidid><orcidid>https://orcid.org/0000-0002-1741-1362</orcidid><orcidid>https://orcid.org/0000-0002-0285-8700</orcidid><orcidid>https://orcid.org/0000-0002-7023-8490</orcidid><orcidid>https://orcid.org/0000-0003-0927-3825</orcidid><orcidid>https://orcid.org/0000-0002-4184-8046</orcidid><orcidid>https://orcid.org/0000-0003-0008-9079</orcidid><orcidid>https://orcid.org/0000-0002-0246-8884</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2024-10, Vol.161 (16)
issn 0021-9606
1089-7690
1089-7690
language eng
recordid cdi_proquest_miscellaneous_3119724834
source MEDLINE; AIP Journals Complete
subjects Activation analysis
Bladder
Bladder cancer
Cancer
Gain of Function Mutation
Homeostasis
Humans
Ligands
Molecular Dynamics Simulation
Molecular structure
Mutation
PPAR gamma - chemistry
PPAR gamma - genetics
PPAR gamma - metabolism
Receptors
Residues
Stabilization
Thermal simulation
Urinary Bladder Neoplasms - genetics
Urinary Bladder Neoplasms - metabolism
Urinary Bladder Neoplasms - pathology
title Exploring the molecular pathways of the activation process in PPARγ recurrent bladder cancer mutants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T02%3A10%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20the%20molecular%20pathways%20of%20the%20activation%20process%20in%20PPAR%CE%B3%20recurrent%20bladder%20cancer%20mutants&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=de%20Oliveira,%20Vin%C3%ADcius%20M.&rft.date=2024-10-28&rft.volume=161&rft.issue=16&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0232041&rft_dat=%3Cproquest_pubme%3E3119724834%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3123905298&rft_id=info:pmid/39440760&rfr_iscdi=true