Interstitial Oxygen Acts as Electronic Buffer Stabilizing High‐Entropy Alloys for Trifunctional Electrocatalysis

Understanding the effect of elements’ oxygen affinity is essential for comprehending high‐entropy alloys’ (HEAs) complete properties. However, the origin of HEAs' oxygen‐containing structure and stability remains poorly understood, primarily due to their diverse components, hindering synthesis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2024-12, Vol.36 (50), p.e2412954-n/a
Hauptverfasser: Zou, Xiaoxiao, Zhao, Xinyu, Pang, Bohuai, Ma, Hang, Zeng, Kun, Zhi, Songsong, Guo, Hong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 50
container_start_page e2412954
container_title Advanced materials (Weinheim)
container_volume 36
creator Zou, Xiaoxiao
Zhao, Xinyu
Pang, Bohuai
Ma, Hang
Zeng, Kun
Zhi, Songsong
Guo, Hong
description Understanding the effect of elements’ oxygen affinity is essential for comprehending high‐entropy alloys’ (HEAs) complete properties. However, the origin of HEAs' oxygen‐containing structure and stability remains poorly understood, primarily due to their diverse components, hindering synthesis and analysis. Herein, the O‐doping HEAs (HEA‐O) have demonstrated outstanding performance and stability in electrolyzed water and Zinc–air batteries which can be reassembled after being stable for more than 1600 h when the zinc consumption is over. The experiment and DFT simulation demonstrate that Cr with strong oxygen affinity can introduce more oxygen into the system of HEAs. Consequently, interstitial oxygens act as electronic buffers making the binding energy of other metal elements move to a higher level. Additionally, O‐doping lowers the d‐band center promoting electrochemical activity and increasing vacancy formation energies of metal active sites leading to super stability. The study provides significant insights into the design and comprehension of interstitial oxygen‐doped HEAs. The Cr element with strong oxygen affinity can introduce oxygen atoms into the high‐entropy alloy system. Interstitial oxygen acts as an electronic buffer making the binding energy of other metal elements move to a higher level and increasing vacancy formation energies of metal active sites leading to super stability.
doi_str_mv 10.1002/adma.202412954
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3119193016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3143201244</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2584-dd5f5035bc326bcc3b11985604e226e4e5bde946516a0590a35c083721ee30bc3</originalsourceid><addsrcrecordid>eNqF0b1uFDEQwHELgcgRaCmRJRqaPcafnMslHCRSUApCvfJ6Zw9Hvt3D9iosVR4hz8iT4NMdQaKhcvObv0YeQl4yWDIA_tZ2W7vkwCXjRslHZMEUZ5UEox6TBRihKqPl6oQ8S-kGAIwG_ZScCCOFBsMXJF4MGWPKPnsb6NWPeYMDrV1O1Ca6DuhyHAfv6Pup7zHSL9m2PvifftjQc7_59uvufj0UsptpHcI4J9qPkV5H30-Dy34cSvRYcTbbMCefnpMnvQ0JXxzfU_L14_r67Ly6vPp0cVZfVo6rlay6TvUKhGqd4Lp1TrSMmZXSIJFzjRJV26GRWjFtQRmwQjlYiXecIQooU6fkzaG7i-P3CVNutj45DMEOOE6pEaXHjACmC339D70Zp1iW3yspODAuZVHLg3JxTCli3-yi39o4Nwya_TWa_TWah2uUgVfH7NRusXvgf76_AHMAtz7g_J9cU3_4XP-N_wZJT5fR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3143201244</pqid></control><display><type>article</type><title>Interstitial Oxygen Acts as Electronic Buffer Stabilizing High‐Entropy Alloys for Trifunctional Electrocatalysis</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zou, Xiaoxiao ; Zhao, Xinyu ; Pang, Bohuai ; Ma, Hang ; Zeng, Kun ; Zhi, Songsong ; Guo, Hong</creator><creatorcontrib>Zou, Xiaoxiao ; Zhao, Xinyu ; Pang, Bohuai ; Ma, Hang ; Zeng, Kun ; Zhi, Songsong ; Guo, Hong</creatorcontrib><description>Understanding the effect of elements’ oxygen affinity is essential for comprehending high‐entropy alloys’ (HEAs) complete properties. However, the origin of HEAs' oxygen‐containing structure and stability remains poorly understood, primarily due to their diverse components, hindering synthesis and analysis. Herein, the O‐doping HEAs (HEA‐O) have demonstrated outstanding performance and stability in electrolyzed water and Zinc–air batteries which can be reassembled after being stable for more than 1600 h when the zinc consumption is over. The experiment and DFT simulation demonstrate that Cr with strong oxygen affinity can introduce more oxygen into the system of HEAs. Consequently, interstitial oxygens act as electronic buffers making the binding energy of other metal elements move to a higher level. Additionally, O‐doping lowers the d‐band center promoting electrochemical activity and increasing vacancy formation energies of metal active sites leading to super stability. The study provides significant insights into the design and comprehension of interstitial oxygen‐doped HEAs. The Cr element with strong oxygen affinity can introduce oxygen atoms into the high‐entropy alloy system. Interstitial oxygen acts as an electronic buffer making the binding energy of other metal elements move to a higher level and increasing vacancy formation energies of metal active sites leading to super stability.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202412954</identifier><identifier>PMID: 39436092</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Affinity ; Alloying elements ; Buffers ; Doping ; electronic buffer ; Free energy ; Heat of formation ; High entropy alloys ; interstitial oxygen ; Metal air batteries ; Stability ; trifunctional electrocatalysis ; Zinc-oxygen batteries</subject><ispartof>Advanced materials (Weinheim), 2024-12, Vol.36 (50), p.e2412954-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2584-dd5f5035bc326bcc3b11985604e226e4e5bde946516a0590a35c083721ee30bc3</cites><orcidid>0000-0001-5693-2980</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202412954$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202412954$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39436092$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zou, Xiaoxiao</creatorcontrib><creatorcontrib>Zhao, Xinyu</creatorcontrib><creatorcontrib>Pang, Bohuai</creatorcontrib><creatorcontrib>Ma, Hang</creatorcontrib><creatorcontrib>Zeng, Kun</creatorcontrib><creatorcontrib>Zhi, Songsong</creatorcontrib><creatorcontrib>Guo, Hong</creatorcontrib><title>Interstitial Oxygen Acts as Electronic Buffer Stabilizing High‐Entropy Alloys for Trifunctional Electrocatalysis</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Understanding the effect of elements’ oxygen affinity is essential for comprehending high‐entropy alloys’ (HEAs) complete properties. However, the origin of HEAs' oxygen‐containing structure and stability remains poorly understood, primarily due to their diverse components, hindering synthesis and analysis. Herein, the O‐doping HEAs (HEA‐O) have demonstrated outstanding performance and stability in electrolyzed water and Zinc–air batteries which can be reassembled after being stable for more than 1600 h when the zinc consumption is over. The experiment and DFT simulation demonstrate that Cr with strong oxygen affinity can introduce more oxygen into the system of HEAs. Consequently, interstitial oxygens act as electronic buffers making the binding energy of other metal elements move to a higher level. Additionally, O‐doping lowers the d‐band center promoting electrochemical activity and increasing vacancy formation energies of metal active sites leading to super stability. The study provides significant insights into the design and comprehension of interstitial oxygen‐doped HEAs. The Cr element with strong oxygen affinity can introduce oxygen atoms into the high‐entropy alloy system. Interstitial oxygen acts as an electronic buffer making the binding energy of other metal elements move to a higher level and increasing vacancy formation energies of metal active sites leading to super stability.</description><subject>Affinity</subject><subject>Alloying elements</subject><subject>Buffers</subject><subject>Doping</subject><subject>electronic buffer</subject><subject>Free energy</subject><subject>Heat of formation</subject><subject>High entropy alloys</subject><subject>interstitial oxygen</subject><subject>Metal air batteries</subject><subject>Stability</subject><subject>trifunctional electrocatalysis</subject><subject>Zinc-oxygen batteries</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqF0b1uFDEQwHELgcgRaCmRJRqaPcafnMslHCRSUApCvfJ6Zw9Hvt3D9iosVR4hz8iT4NMdQaKhcvObv0YeQl4yWDIA_tZ2W7vkwCXjRslHZMEUZ5UEox6TBRihKqPl6oQ8S-kGAIwG_ZScCCOFBsMXJF4MGWPKPnsb6NWPeYMDrV1O1Ca6DuhyHAfv6Pup7zHSL9m2PvifftjQc7_59uvufj0UsptpHcI4J9qPkV5H30-Dy34cSvRYcTbbMCefnpMnvQ0JXxzfU_L14_r67Ly6vPp0cVZfVo6rlay6TvUKhGqd4Lp1TrSMmZXSIJFzjRJV26GRWjFtQRmwQjlYiXecIQooU6fkzaG7i-P3CVNutj45DMEOOE6pEaXHjACmC339D70Zp1iW3yspODAuZVHLg3JxTCli3-yi39o4Nwya_TWa_TWah2uUgVfH7NRusXvgf76_AHMAtz7g_J9cU3_4XP-N_wZJT5fR</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Zou, Xiaoxiao</creator><creator>Zhao, Xinyu</creator><creator>Pang, Bohuai</creator><creator>Ma, Hang</creator><creator>Zeng, Kun</creator><creator>Zhi, Songsong</creator><creator>Guo, Hong</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5693-2980</orcidid></search><sort><creationdate>20241201</creationdate><title>Interstitial Oxygen Acts as Electronic Buffer Stabilizing High‐Entropy Alloys for Trifunctional Electrocatalysis</title><author>Zou, Xiaoxiao ; Zhao, Xinyu ; Pang, Bohuai ; Ma, Hang ; Zeng, Kun ; Zhi, Songsong ; Guo, Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2584-dd5f5035bc326bcc3b11985604e226e4e5bde946516a0590a35c083721ee30bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Affinity</topic><topic>Alloying elements</topic><topic>Buffers</topic><topic>Doping</topic><topic>electronic buffer</topic><topic>Free energy</topic><topic>Heat of formation</topic><topic>High entropy alloys</topic><topic>interstitial oxygen</topic><topic>Metal air batteries</topic><topic>Stability</topic><topic>trifunctional electrocatalysis</topic><topic>Zinc-oxygen batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zou, Xiaoxiao</creatorcontrib><creatorcontrib>Zhao, Xinyu</creatorcontrib><creatorcontrib>Pang, Bohuai</creatorcontrib><creatorcontrib>Ma, Hang</creatorcontrib><creatorcontrib>Zeng, Kun</creatorcontrib><creatorcontrib>Zhi, Songsong</creatorcontrib><creatorcontrib>Guo, Hong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zou, Xiaoxiao</au><au>Zhao, Xinyu</au><au>Pang, Bohuai</au><au>Ma, Hang</au><au>Zeng, Kun</au><au>Zhi, Songsong</au><au>Guo, Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interstitial Oxygen Acts as Electronic Buffer Stabilizing High‐Entropy Alloys for Trifunctional Electrocatalysis</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>36</volume><issue>50</issue><spage>e2412954</spage><epage>n/a</epage><pages>e2412954-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>Understanding the effect of elements’ oxygen affinity is essential for comprehending high‐entropy alloys’ (HEAs) complete properties. However, the origin of HEAs' oxygen‐containing structure and stability remains poorly understood, primarily due to their diverse components, hindering synthesis and analysis. Herein, the O‐doping HEAs (HEA‐O) have demonstrated outstanding performance and stability in electrolyzed water and Zinc–air batteries which can be reassembled after being stable for more than 1600 h when the zinc consumption is over. The experiment and DFT simulation demonstrate that Cr with strong oxygen affinity can introduce more oxygen into the system of HEAs. Consequently, interstitial oxygens act as electronic buffers making the binding energy of other metal elements move to a higher level. Additionally, O‐doping lowers the d‐band center promoting electrochemical activity and increasing vacancy formation energies of metal active sites leading to super stability. The study provides significant insights into the design and comprehension of interstitial oxygen‐doped HEAs. The Cr element with strong oxygen affinity can introduce oxygen atoms into the high‐entropy alloy system. Interstitial oxygen acts as an electronic buffer making the binding energy of other metal elements move to a higher level and increasing vacancy formation energies of metal active sites leading to super stability.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39436092</pmid><doi>10.1002/adma.202412954</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5693-2980</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2024-12, Vol.36 (50), p.e2412954-n/a
issn 0935-9648
1521-4095
1521-4095
language eng
recordid cdi_proquest_miscellaneous_3119193016
source Wiley Online Library Journals Frontfile Complete
subjects Affinity
Alloying elements
Buffers
Doping
electronic buffer
Free energy
Heat of formation
High entropy alloys
interstitial oxygen
Metal air batteries
Stability
trifunctional electrocatalysis
Zinc-oxygen batteries
title Interstitial Oxygen Acts as Electronic Buffer Stabilizing High‐Entropy Alloys for Trifunctional Electrocatalysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T01%3A13%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interstitial%20Oxygen%20Acts%20as%20Electronic%20Buffer%20Stabilizing%20High%E2%80%90Entropy%20Alloys%20for%20Trifunctional%20Electrocatalysis&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Zou,%20Xiaoxiao&rft.date=2024-12-01&rft.volume=36&rft.issue=50&rft.spage=e2412954&rft.epage=n/a&rft.pages=e2412954-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202412954&rft_dat=%3Cproquest_cross%3E3143201244%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3143201244&rft_id=info:pmid/39436092&rfr_iscdi=true