Construction of a Fluorinated‐Anion Pillared Metal‐Organic Framework Exhibiting Dual‐Pore Architecture for Simultaneous Enhancement of C2H2 Adsorption Capacity and Selectivity
Physisorption‐based separation processes represents a promising alternative to the conventional thermally driven methods, such as cryogenic separation. However, a significant challenge lies in balancing the trade‐off between adsorption capacity and selectivity of adsorbents. In this study, we introd...
Gespeichert in:
Veröffentlicht in: | Chemistry : a European journal 2025-01, Vol.31 (1), p.e202403340-n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 1 |
container_start_page | e202403340 |
container_title | Chemistry : a European journal |
container_volume | 31 |
creator | Li, Liangjun Li, Fangru Xu, Wenli Guo, Mengwei Zhu, Peijie Xing, Tao Li, Zhi Wang, Mingqing Wu, Mingbo |
description | Physisorption‐based separation processes represents a promising alternative to the conventional thermally driven methods, such as cryogenic separation. However, a significant challenge lies in balancing the trade‐off between adsorption capacity and selectivity of adsorbents. In this study, we introduce a novel fluorinated‐anion pillared metal‐organic frameworks (APMOFs) featuring a dual‐pore architecture, constructed using a pyridine‐oxazole bifunctional ligand. The inherent low symmetry of the ligand leads to significant distortion of the fluorinated‐anion pillars, resulting in a distinctive type of APMOFs characterized by dual‐pore architecture. On pore structure with constrict pore width is enriched with a high density of anion fluorinated pillars, offering numerous active sites advantageous for enhancing separation selectivity. Concurrently, the other pore structure exhibits larger dimensions, facilitating increased gas molecule accommodation and thereby augmenting adsorption capacity. Gas sorption studies reveal a substantial C2H2 adsorption capacity and a high C2H2/CO2 separation selectivity. Breakthrough experiments confirm its exceptional separation performance, while theoretical investigations elucidate a sequential adsorption process within these APMOFs, underscoring the efficacy of this strategy in overcoming trade‐off limits in adsorbents.
A novel fluorinated‐anion pillared metal‐organic framework (APMOF) featuring a dual‐pore architecture has been successfully constructed. This framework demonstrates exceptional C2H2 adsorption capacity and C2H2/CO2 separation selectivity, effectively balancing the trade‐off between adsorption capacity and selectivity. |
doi_str_mv | 10.1002/chem.202403340 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_3119192277</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3152792470</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2360-1f624d61ab84680e8a9fb0c265a7a4573ed5d4348e75ed40ab57696611ff1c503</originalsourceid><addsrcrecordid>eNpdkc1u1DAUhS1EJYaWLWtLbNik-N_j5SjMMEitWqllHXmcm45LYgfHaZkdj8DL8EI8CckUddGVdXw_nXt0D0LvKTmnhLBPbg_dOSNMEM4FeYUWVDJacK3ka7QgRuhCSW7eoLfDcE8IMYrzBfpTxjDkNLrsY8CxwRZv2jEmH2yG-u-v36swD65929oENb6EbNvp-yrd2eAd3iTbwWNM3_H6597vfPbhDn8ej8x1TIBXye19BpfHSTQx4RvfjW22AeI44HXY2-Cgg5Dn5SXbMryqh5j6Y57S9tb5fMA21PgG2snGP0z6DJ00th3g3f_3FH3brG_LbXFx9eVrubooesYVKWijmKgVtbulUEsCS2uaHXFMSautkJpDLWvBxRK0hFoQu5NaGaUobRrqJOGn6OOTb5_ijxGGXHV-cDDd4hi_4pQaahjTekI_vEDv45jClG6iJNOGCT0bmifq0bdwqPrkO5sOFSXVXGE1V1g9V1iV2_Xls-L_ABrdl7w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3152792470</pqid></control><display><type>article</type><title>Construction of a Fluorinated‐Anion Pillared Metal‐Organic Framework Exhibiting Dual‐Pore Architecture for Simultaneous Enhancement of C2H2 Adsorption Capacity and Selectivity</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Li, Liangjun ; Li, Fangru ; Xu, Wenli ; Guo, Mengwei ; Zhu, Peijie ; Xing, Tao ; Li, Zhi ; Wang, Mingqing ; Wu, Mingbo</creator><creatorcontrib>Li, Liangjun ; Li, Fangru ; Xu, Wenli ; Guo, Mengwei ; Zhu, Peijie ; Xing, Tao ; Li, Zhi ; Wang, Mingqing ; Wu, Mingbo</creatorcontrib><description>Physisorption‐based separation processes represents a promising alternative to the conventional thermally driven methods, such as cryogenic separation. However, a significant challenge lies in balancing the trade‐off between adsorption capacity and selectivity of adsorbents. In this study, we introduce a novel fluorinated‐anion pillared metal‐organic frameworks (APMOFs) featuring a dual‐pore architecture, constructed using a pyridine‐oxazole bifunctional ligand. The inherent low symmetry of the ligand leads to significant distortion of the fluorinated‐anion pillars, resulting in a distinctive type of APMOFs characterized by dual‐pore architecture. On pore structure with constrict pore width is enriched with a high density of anion fluorinated pillars, offering numerous active sites advantageous for enhancing separation selectivity. Concurrently, the other pore structure exhibits larger dimensions, facilitating increased gas molecule accommodation and thereby augmenting adsorption capacity. Gas sorption studies reveal a substantial C2H2 adsorption capacity and a high C2H2/CO2 separation selectivity. Breakthrough experiments confirm its exceptional separation performance, while theoretical investigations elucidate a sequential adsorption process within these APMOFs, underscoring the efficacy of this strategy in overcoming trade‐off limits in adsorbents.
A novel fluorinated‐anion pillared metal‐organic framework (APMOF) featuring a dual‐pore architecture has been successfully constructed. This framework demonstrates exceptional C2H2 adsorption capacity and C2H2/CO2 separation selectivity, effectively balancing the trade‐off between adsorption capacity and selectivity.</description><identifier>ISSN: 0947-6539</identifier><identifier>ISSN: 1521-3765</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.202403340</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Active adsorption sites ; Adsorbents ; Adsorption ; Anion-pillared metal-organic frameworks ; Anions ; C2H2/CO2 separation ; Carbon dioxide ; Dual-pore architectures ; Fluorination ; Gas separation ; Ligands ; Oxazole ; Separation ; Separation processes</subject><ispartof>Chemistry : a European journal, 2025-01, Vol.31 (1), p.e202403340-n/a</ispartof><rights>2024 Wiley-VCH GmbH</rights><rights>2025 Wiley-VCH GmbH</rights><rights>2024 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0048-778X ; 0000-0001-9370-4995</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.202403340$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.202403340$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids></links><search><creatorcontrib>Li, Liangjun</creatorcontrib><creatorcontrib>Li, Fangru</creatorcontrib><creatorcontrib>Xu, Wenli</creatorcontrib><creatorcontrib>Guo, Mengwei</creatorcontrib><creatorcontrib>Zhu, Peijie</creatorcontrib><creatorcontrib>Xing, Tao</creatorcontrib><creatorcontrib>Li, Zhi</creatorcontrib><creatorcontrib>Wang, Mingqing</creatorcontrib><creatorcontrib>Wu, Mingbo</creatorcontrib><title>Construction of a Fluorinated‐Anion Pillared Metal‐Organic Framework Exhibiting Dual‐Pore Architecture for Simultaneous Enhancement of C2H2 Adsorption Capacity and Selectivity</title><title>Chemistry : a European journal</title><description>Physisorption‐based separation processes represents a promising alternative to the conventional thermally driven methods, such as cryogenic separation. However, a significant challenge lies in balancing the trade‐off between adsorption capacity and selectivity of adsorbents. In this study, we introduce a novel fluorinated‐anion pillared metal‐organic frameworks (APMOFs) featuring a dual‐pore architecture, constructed using a pyridine‐oxazole bifunctional ligand. The inherent low symmetry of the ligand leads to significant distortion of the fluorinated‐anion pillars, resulting in a distinctive type of APMOFs characterized by dual‐pore architecture. On pore structure with constrict pore width is enriched with a high density of anion fluorinated pillars, offering numerous active sites advantageous for enhancing separation selectivity. Concurrently, the other pore structure exhibits larger dimensions, facilitating increased gas molecule accommodation and thereby augmenting adsorption capacity. Gas sorption studies reveal a substantial C2H2 adsorption capacity and a high C2H2/CO2 separation selectivity. Breakthrough experiments confirm its exceptional separation performance, while theoretical investigations elucidate a sequential adsorption process within these APMOFs, underscoring the efficacy of this strategy in overcoming trade‐off limits in adsorbents.
A novel fluorinated‐anion pillared metal‐organic framework (APMOF) featuring a dual‐pore architecture has been successfully constructed. This framework demonstrates exceptional C2H2 adsorption capacity and C2H2/CO2 separation selectivity, effectively balancing the trade‐off between adsorption capacity and selectivity.</description><subject>Active adsorption sites</subject><subject>Adsorbents</subject><subject>Adsorption</subject><subject>Anion-pillared metal-organic frameworks</subject><subject>Anions</subject><subject>C2H2/CO2 separation</subject><subject>Carbon dioxide</subject><subject>Dual-pore architectures</subject><subject>Fluorination</subject><subject>Gas separation</subject><subject>Ligands</subject><subject>Oxazole</subject><subject>Separation</subject><subject>Separation processes</subject><issn>0947-6539</issn><issn>1521-3765</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNpdkc1u1DAUhS1EJYaWLWtLbNik-N_j5SjMMEitWqllHXmcm45LYgfHaZkdj8DL8EI8CckUddGVdXw_nXt0D0LvKTmnhLBPbg_dOSNMEM4FeYUWVDJacK3ka7QgRuhCSW7eoLfDcE8IMYrzBfpTxjDkNLrsY8CxwRZv2jEmH2yG-u-v36swD65929oENb6EbNvp-yrd2eAd3iTbwWNM3_H6597vfPbhDn8ej8x1TIBXye19BpfHSTQx4RvfjW22AeI44HXY2-Cgg5Dn5SXbMryqh5j6Y57S9tb5fMA21PgG2snGP0z6DJ00th3g3f_3FH3brG_LbXFx9eVrubooesYVKWijmKgVtbulUEsCS2uaHXFMSautkJpDLWvBxRK0hFoQu5NaGaUobRrqJOGn6OOTb5_ijxGGXHV-cDDd4hi_4pQaahjTekI_vEDv45jClG6iJNOGCT0bmifq0bdwqPrkO5sOFSXVXGE1V1g9V1iV2_Xls-L_ABrdl7w</recordid><startdate>20250102</startdate><enddate>20250102</enddate><creator>Li, Liangjun</creator><creator>Li, Fangru</creator><creator>Xu, Wenli</creator><creator>Guo, Mengwei</creator><creator>Zhu, Peijie</creator><creator>Xing, Tao</creator><creator>Li, Zhi</creator><creator>Wang, Mingqing</creator><creator>Wu, Mingbo</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0048-778X</orcidid><orcidid>https://orcid.org/0000-0001-9370-4995</orcidid></search><sort><creationdate>20250102</creationdate><title>Construction of a Fluorinated‐Anion Pillared Metal‐Organic Framework Exhibiting Dual‐Pore Architecture for Simultaneous Enhancement of C2H2 Adsorption Capacity and Selectivity</title><author>Li, Liangjun ; Li, Fangru ; Xu, Wenli ; Guo, Mengwei ; Zhu, Peijie ; Xing, Tao ; Li, Zhi ; Wang, Mingqing ; Wu, Mingbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2360-1f624d61ab84680e8a9fb0c265a7a4573ed5d4348e75ed40ab57696611ff1c503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Active adsorption sites</topic><topic>Adsorbents</topic><topic>Adsorption</topic><topic>Anion-pillared metal-organic frameworks</topic><topic>Anions</topic><topic>C2H2/CO2 separation</topic><topic>Carbon dioxide</topic><topic>Dual-pore architectures</topic><topic>Fluorination</topic><topic>Gas separation</topic><topic>Ligands</topic><topic>Oxazole</topic><topic>Separation</topic><topic>Separation processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Liangjun</creatorcontrib><creatorcontrib>Li, Fangru</creatorcontrib><creatorcontrib>Xu, Wenli</creatorcontrib><creatorcontrib>Guo, Mengwei</creatorcontrib><creatorcontrib>Zhu, Peijie</creatorcontrib><creatorcontrib>Xing, Tao</creatorcontrib><creatorcontrib>Li, Zhi</creatorcontrib><creatorcontrib>Wang, Mingqing</creatorcontrib><creatorcontrib>Wu, Mingbo</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Liangjun</au><au>Li, Fangru</au><au>Xu, Wenli</au><au>Guo, Mengwei</au><au>Zhu, Peijie</au><au>Xing, Tao</au><au>Li, Zhi</au><au>Wang, Mingqing</au><au>Wu, Mingbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Construction of a Fluorinated‐Anion Pillared Metal‐Organic Framework Exhibiting Dual‐Pore Architecture for Simultaneous Enhancement of C2H2 Adsorption Capacity and Selectivity</atitle><jtitle>Chemistry : a European journal</jtitle><date>2025-01-02</date><risdate>2025</risdate><volume>31</volume><issue>1</issue><spage>e202403340</spage><epage>n/a</epage><pages>e202403340-n/a</pages><issn>0947-6539</issn><issn>1521-3765</issn><eissn>1521-3765</eissn><abstract>Physisorption‐based separation processes represents a promising alternative to the conventional thermally driven methods, such as cryogenic separation. However, a significant challenge lies in balancing the trade‐off between adsorption capacity and selectivity of adsorbents. In this study, we introduce a novel fluorinated‐anion pillared metal‐organic frameworks (APMOFs) featuring a dual‐pore architecture, constructed using a pyridine‐oxazole bifunctional ligand. The inherent low symmetry of the ligand leads to significant distortion of the fluorinated‐anion pillars, resulting in a distinctive type of APMOFs characterized by dual‐pore architecture. On pore structure with constrict pore width is enriched with a high density of anion fluorinated pillars, offering numerous active sites advantageous for enhancing separation selectivity. Concurrently, the other pore structure exhibits larger dimensions, facilitating increased gas molecule accommodation and thereby augmenting adsorption capacity. Gas sorption studies reveal a substantial C2H2 adsorption capacity and a high C2H2/CO2 separation selectivity. Breakthrough experiments confirm its exceptional separation performance, while theoretical investigations elucidate a sequential adsorption process within these APMOFs, underscoring the efficacy of this strategy in overcoming trade‐off limits in adsorbents.
A novel fluorinated‐anion pillared metal‐organic framework (APMOF) featuring a dual‐pore architecture has been successfully constructed. This framework demonstrates exceptional C2H2 adsorption capacity and C2H2/CO2 separation selectivity, effectively balancing the trade‐off between adsorption capacity and selectivity.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/chem.202403340</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-0048-778X</orcidid><orcidid>https://orcid.org/0000-0001-9370-4995</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-6539 |
ispartof | Chemistry : a European journal, 2025-01, Vol.31 (1), p.e202403340-n/a |
issn | 0947-6539 1521-3765 1521-3765 |
language | eng |
recordid | cdi_proquest_miscellaneous_3119192277 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Active adsorption sites Adsorbents Adsorption Anion-pillared metal-organic frameworks Anions C2H2/CO2 separation Carbon dioxide Dual-pore architectures Fluorination Gas separation Ligands Oxazole Separation Separation processes |
title | Construction of a Fluorinated‐Anion Pillared Metal‐Organic Framework Exhibiting Dual‐Pore Architecture for Simultaneous Enhancement of C2H2 Adsorption Capacity and Selectivity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A39%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Construction%20of%20a%20Fluorinated%E2%80%90Anion%20Pillared%20Metal%E2%80%90Organic%20Framework%20Exhibiting%20Dual%E2%80%90Pore%20Architecture%20for%20Simultaneous%20Enhancement%20of%20C2H2%20Adsorption%20Capacity%20and%20Selectivity&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Li,%20Liangjun&rft.date=2025-01-02&rft.volume=31&rft.issue=1&rft.spage=e202403340&rft.epage=n/a&rft.pages=e202403340-n/a&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.202403340&rft_dat=%3Cproquest_wiley%3E3152792470%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3152792470&rft_id=info:pmid/&rfr_iscdi=true |