Construction of a Fluorinated‐Anion Pillared Metal‐Organic Framework Exhibiting Dual‐Pore Architecture for Simultaneous Enhancement of C2H2 Adsorption Capacity and Selectivity

Physisorption‐based separation processes represents a promising alternative to the conventional thermally driven methods, such as cryogenic separation. However, a significant challenge lies in balancing the trade‐off between adsorption capacity and selectivity of adsorbents. In this study, we introd...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2025-01, Vol.31 (1), p.e202403340-n/a
Hauptverfasser: Li, Liangjun, Li, Fangru, Xu, Wenli, Guo, Mengwei, Zhu, Peijie, Xing, Tao, Li, Zhi, Wang, Mingqing, Wu, Mingbo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page e202403340
container_title Chemistry : a European journal
container_volume 31
creator Li, Liangjun
Li, Fangru
Xu, Wenli
Guo, Mengwei
Zhu, Peijie
Xing, Tao
Li, Zhi
Wang, Mingqing
Wu, Mingbo
description Physisorption‐based separation processes represents a promising alternative to the conventional thermally driven methods, such as cryogenic separation. However, a significant challenge lies in balancing the trade‐off between adsorption capacity and selectivity of adsorbents. In this study, we introduce a novel fluorinated‐anion pillared metal‐organic frameworks (APMOFs) featuring a dual‐pore architecture, constructed using a pyridine‐oxazole bifunctional ligand. The inherent low symmetry of the ligand leads to significant distortion of the fluorinated‐anion pillars, resulting in a distinctive type of APMOFs characterized by dual‐pore architecture. On pore structure with constrict pore width is enriched with a high density of anion fluorinated pillars, offering numerous active sites advantageous for enhancing separation selectivity. Concurrently, the other pore structure exhibits larger dimensions, facilitating increased gas molecule accommodation and thereby augmenting adsorption capacity. Gas sorption studies reveal a substantial C2H2 adsorption capacity and a high C2H2/CO2 separation selectivity. Breakthrough experiments confirm its exceptional separation performance, while theoretical investigations elucidate a sequential adsorption process within these APMOFs, underscoring the efficacy of this strategy in overcoming trade‐off limits in adsorbents. A novel fluorinated‐anion pillared metal‐organic framework (APMOF) featuring a dual‐pore architecture has been successfully constructed. This framework demonstrates exceptional C2H2 adsorption capacity and C2H2/CO2 separation selectivity, effectively balancing the trade‐off between adsorption capacity and selectivity.
doi_str_mv 10.1002/chem.202403340
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_3119192277</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3152792470</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2360-1f624d61ab84680e8a9fb0c265a7a4573ed5d4348e75ed40ab57696611ff1c503</originalsourceid><addsrcrecordid>eNpdkc1u1DAUhS1EJYaWLWtLbNik-N_j5SjMMEitWqllHXmcm45LYgfHaZkdj8DL8EI8CckUddGVdXw_nXt0D0LvKTmnhLBPbg_dOSNMEM4FeYUWVDJacK3ka7QgRuhCSW7eoLfDcE8IMYrzBfpTxjDkNLrsY8CxwRZv2jEmH2yG-u-v36swD65929oENb6EbNvp-yrd2eAd3iTbwWNM3_H6597vfPbhDn8ej8x1TIBXye19BpfHSTQx4RvfjW22AeI44HXY2-Cgg5Dn5SXbMryqh5j6Y57S9tb5fMA21PgG2snGP0z6DJ00th3g3f_3FH3brG_LbXFx9eVrubooesYVKWijmKgVtbulUEsCS2uaHXFMSautkJpDLWvBxRK0hFoQu5NaGaUobRrqJOGn6OOTb5_ijxGGXHV-cDDd4hi_4pQaahjTekI_vEDv45jClG6iJNOGCT0bmifq0bdwqPrkO5sOFSXVXGE1V1g9V1iV2_Xls-L_ABrdl7w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3152792470</pqid></control><display><type>article</type><title>Construction of a Fluorinated‐Anion Pillared Metal‐Organic Framework Exhibiting Dual‐Pore Architecture for Simultaneous Enhancement of C2H2 Adsorption Capacity and Selectivity</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Li, Liangjun ; Li, Fangru ; Xu, Wenli ; Guo, Mengwei ; Zhu, Peijie ; Xing, Tao ; Li, Zhi ; Wang, Mingqing ; Wu, Mingbo</creator><creatorcontrib>Li, Liangjun ; Li, Fangru ; Xu, Wenli ; Guo, Mengwei ; Zhu, Peijie ; Xing, Tao ; Li, Zhi ; Wang, Mingqing ; Wu, Mingbo</creatorcontrib><description>Physisorption‐based separation processes represents a promising alternative to the conventional thermally driven methods, such as cryogenic separation. However, a significant challenge lies in balancing the trade‐off between adsorption capacity and selectivity of adsorbents. In this study, we introduce a novel fluorinated‐anion pillared metal‐organic frameworks (APMOFs) featuring a dual‐pore architecture, constructed using a pyridine‐oxazole bifunctional ligand. The inherent low symmetry of the ligand leads to significant distortion of the fluorinated‐anion pillars, resulting in a distinctive type of APMOFs characterized by dual‐pore architecture. On pore structure with constrict pore width is enriched with a high density of anion fluorinated pillars, offering numerous active sites advantageous for enhancing separation selectivity. Concurrently, the other pore structure exhibits larger dimensions, facilitating increased gas molecule accommodation and thereby augmenting adsorption capacity. Gas sorption studies reveal a substantial C2H2 adsorption capacity and a high C2H2/CO2 separation selectivity. Breakthrough experiments confirm its exceptional separation performance, while theoretical investigations elucidate a sequential adsorption process within these APMOFs, underscoring the efficacy of this strategy in overcoming trade‐off limits in adsorbents. A novel fluorinated‐anion pillared metal‐organic framework (APMOF) featuring a dual‐pore architecture has been successfully constructed. This framework demonstrates exceptional C2H2 adsorption capacity and C2H2/CO2 separation selectivity, effectively balancing the trade‐off between adsorption capacity and selectivity.</description><identifier>ISSN: 0947-6539</identifier><identifier>ISSN: 1521-3765</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.202403340</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Active adsorption sites ; Adsorbents ; Adsorption ; Anion-pillared metal-organic frameworks ; Anions ; C2H2/CO2 separation ; Carbon dioxide ; Dual-pore architectures ; Fluorination ; Gas separation ; Ligands ; Oxazole ; Separation ; Separation processes</subject><ispartof>Chemistry : a European journal, 2025-01, Vol.31 (1), p.e202403340-n/a</ispartof><rights>2024 Wiley-VCH GmbH</rights><rights>2025 Wiley-VCH GmbH</rights><rights>2024 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0048-778X ; 0000-0001-9370-4995</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.202403340$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.202403340$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids></links><search><creatorcontrib>Li, Liangjun</creatorcontrib><creatorcontrib>Li, Fangru</creatorcontrib><creatorcontrib>Xu, Wenli</creatorcontrib><creatorcontrib>Guo, Mengwei</creatorcontrib><creatorcontrib>Zhu, Peijie</creatorcontrib><creatorcontrib>Xing, Tao</creatorcontrib><creatorcontrib>Li, Zhi</creatorcontrib><creatorcontrib>Wang, Mingqing</creatorcontrib><creatorcontrib>Wu, Mingbo</creatorcontrib><title>Construction of a Fluorinated‐Anion Pillared Metal‐Organic Framework Exhibiting Dual‐Pore Architecture for Simultaneous Enhancement of C2H2 Adsorption Capacity and Selectivity</title><title>Chemistry : a European journal</title><description>Physisorption‐based separation processes represents a promising alternative to the conventional thermally driven methods, such as cryogenic separation. However, a significant challenge lies in balancing the trade‐off between adsorption capacity and selectivity of adsorbents. In this study, we introduce a novel fluorinated‐anion pillared metal‐organic frameworks (APMOFs) featuring a dual‐pore architecture, constructed using a pyridine‐oxazole bifunctional ligand. The inherent low symmetry of the ligand leads to significant distortion of the fluorinated‐anion pillars, resulting in a distinctive type of APMOFs characterized by dual‐pore architecture. On pore structure with constrict pore width is enriched with a high density of anion fluorinated pillars, offering numerous active sites advantageous for enhancing separation selectivity. Concurrently, the other pore structure exhibits larger dimensions, facilitating increased gas molecule accommodation and thereby augmenting adsorption capacity. Gas sorption studies reveal a substantial C2H2 adsorption capacity and a high C2H2/CO2 separation selectivity. Breakthrough experiments confirm its exceptional separation performance, while theoretical investigations elucidate a sequential adsorption process within these APMOFs, underscoring the efficacy of this strategy in overcoming trade‐off limits in adsorbents. A novel fluorinated‐anion pillared metal‐organic framework (APMOF) featuring a dual‐pore architecture has been successfully constructed. This framework demonstrates exceptional C2H2 adsorption capacity and C2H2/CO2 separation selectivity, effectively balancing the trade‐off between adsorption capacity and selectivity.</description><subject>Active adsorption sites</subject><subject>Adsorbents</subject><subject>Adsorption</subject><subject>Anion-pillared metal-organic frameworks</subject><subject>Anions</subject><subject>C2H2/CO2 separation</subject><subject>Carbon dioxide</subject><subject>Dual-pore architectures</subject><subject>Fluorination</subject><subject>Gas separation</subject><subject>Ligands</subject><subject>Oxazole</subject><subject>Separation</subject><subject>Separation processes</subject><issn>0947-6539</issn><issn>1521-3765</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNpdkc1u1DAUhS1EJYaWLWtLbNik-N_j5SjMMEitWqllHXmcm45LYgfHaZkdj8DL8EI8CckUddGVdXw_nXt0D0LvKTmnhLBPbg_dOSNMEM4FeYUWVDJacK3ka7QgRuhCSW7eoLfDcE8IMYrzBfpTxjDkNLrsY8CxwRZv2jEmH2yG-u-v36swD65929oENb6EbNvp-yrd2eAd3iTbwWNM3_H6597vfPbhDn8ej8x1TIBXye19BpfHSTQx4RvfjW22AeI44HXY2-Cgg5Dn5SXbMryqh5j6Y57S9tb5fMA21PgG2snGP0z6DJ00th3g3f_3FH3brG_LbXFx9eVrubooesYVKWijmKgVtbulUEsCS2uaHXFMSautkJpDLWvBxRK0hFoQu5NaGaUobRrqJOGn6OOTb5_ijxGGXHV-cDDd4hi_4pQaahjTekI_vEDv45jClG6iJNOGCT0bmifq0bdwqPrkO5sOFSXVXGE1V1g9V1iV2_Xls-L_ABrdl7w</recordid><startdate>20250102</startdate><enddate>20250102</enddate><creator>Li, Liangjun</creator><creator>Li, Fangru</creator><creator>Xu, Wenli</creator><creator>Guo, Mengwei</creator><creator>Zhu, Peijie</creator><creator>Xing, Tao</creator><creator>Li, Zhi</creator><creator>Wang, Mingqing</creator><creator>Wu, Mingbo</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0048-778X</orcidid><orcidid>https://orcid.org/0000-0001-9370-4995</orcidid></search><sort><creationdate>20250102</creationdate><title>Construction of a Fluorinated‐Anion Pillared Metal‐Organic Framework Exhibiting Dual‐Pore Architecture for Simultaneous Enhancement of C2H2 Adsorption Capacity and Selectivity</title><author>Li, Liangjun ; Li, Fangru ; Xu, Wenli ; Guo, Mengwei ; Zhu, Peijie ; Xing, Tao ; Li, Zhi ; Wang, Mingqing ; Wu, Mingbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2360-1f624d61ab84680e8a9fb0c265a7a4573ed5d4348e75ed40ab57696611ff1c503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Active adsorption sites</topic><topic>Adsorbents</topic><topic>Adsorption</topic><topic>Anion-pillared metal-organic frameworks</topic><topic>Anions</topic><topic>C2H2/CO2 separation</topic><topic>Carbon dioxide</topic><topic>Dual-pore architectures</topic><topic>Fluorination</topic><topic>Gas separation</topic><topic>Ligands</topic><topic>Oxazole</topic><topic>Separation</topic><topic>Separation processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Liangjun</creatorcontrib><creatorcontrib>Li, Fangru</creatorcontrib><creatorcontrib>Xu, Wenli</creatorcontrib><creatorcontrib>Guo, Mengwei</creatorcontrib><creatorcontrib>Zhu, Peijie</creatorcontrib><creatorcontrib>Xing, Tao</creatorcontrib><creatorcontrib>Li, Zhi</creatorcontrib><creatorcontrib>Wang, Mingqing</creatorcontrib><creatorcontrib>Wu, Mingbo</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Liangjun</au><au>Li, Fangru</au><au>Xu, Wenli</au><au>Guo, Mengwei</au><au>Zhu, Peijie</au><au>Xing, Tao</au><au>Li, Zhi</au><au>Wang, Mingqing</au><au>Wu, Mingbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Construction of a Fluorinated‐Anion Pillared Metal‐Organic Framework Exhibiting Dual‐Pore Architecture for Simultaneous Enhancement of C2H2 Adsorption Capacity and Selectivity</atitle><jtitle>Chemistry : a European journal</jtitle><date>2025-01-02</date><risdate>2025</risdate><volume>31</volume><issue>1</issue><spage>e202403340</spage><epage>n/a</epage><pages>e202403340-n/a</pages><issn>0947-6539</issn><issn>1521-3765</issn><eissn>1521-3765</eissn><abstract>Physisorption‐based separation processes represents a promising alternative to the conventional thermally driven methods, such as cryogenic separation. However, a significant challenge lies in balancing the trade‐off between adsorption capacity and selectivity of adsorbents. In this study, we introduce a novel fluorinated‐anion pillared metal‐organic frameworks (APMOFs) featuring a dual‐pore architecture, constructed using a pyridine‐oxazole bifunctional ligand. The inherent low symmetry of the ligand leads to significant distortion of the fluorinated‐anion pillars, resulting in a distinctive type of APMOFs characterized by dual‐pore architecture. On pore structure with constrict pore width is enriched with a high density of anion fluorinated pillars, offering numerous active sites advantageous for enhancing separation selectivity. Concurrently, the other pore structure exhibits larger dimensions, facilitating increased gas molecule accommodation and thereby augmenting adsorption capacity. Gas sorption studies reveal a substantial C2H2 adsorption capacity and a high C2H2/CO2 separation selectivity. Breakthrough experiments confirm its exceptional separation performance, while theoretical investigations elucidate a sequential adsorption process within these APMOFs, underscoring the efficacy of this strategy in overcoming trade‐off limits in adsorbents. A novel fluorinated‐anion pillared metal‐organic framework (APMOF) featuring a dual‐pore architecture has been successfully constructed. This framework demonstrates exceptional C2H2 adsorption capacity and C2H2/CO2 separation selectivity, effectively balancing the trade‐off between adsorption capacity and selectivity.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/chem.202403340</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-0048-778X</orcidid><orcidid>https://orcid.org/0000-0001-9370-4995</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0947-6539
ispartof Chemistry : a European journal, 2025-01, Vol.31 (1), p.e202403340-n/a
issn 0947-6539
1521-3765
1521-3765
language eng
recordid cdi_proquest_miscellaneous_3119192277
source Wiley Online Library Journals Frontfile Complete
subjects Active adsorption sites
Adsorbents
Adsorption
Anion-pillared metal-organic frameworks
Anions
C2H2/CO2 separation
Carbon dioxide
Dual-pore architectures
Fluorination
Gas separation
Ligands
Oxazole
Separation
Separation processes
title Construction of a Fluorinated‐Anion Pillared Metal‐Organic Framework Exhibiting Dual‐Pore Architecture for Simultaneous Enhancement of C2H2 Adsorption Capacity and Selectivity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A39%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Construction%20of%20a%20Fluorinated%E2%80%90Anion%20Pillared%20Metal%E2%80%90Organic%20Framework%20Exhibiting%20Dual%E2%80%90Pore%20Architecture%20for%20Simultaneous%20Enhancement%20of%20C2H2%20Adsorption%20Capacity%20and%20Selectivity&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Li,%20Liangjun&rft.date=2025-01-02&rft.volume=31&rft.issue=1&rft.spage=e202403340&rft.epage=n/a&rft.pages=e202403340-n/a&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.202403340&rft_dat=%3Cproquest_wiley%3E3152792470%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3152792470&rft_id=info:pmid/&rfr_iscdi=true