Multirelational Hypergraph Representation Learning for Predicting circRNA-miRNA Associations
One of the principal functions of circular RNA (circRNA) is to participate in gene regulation by sponging microRNAs (miRNAs). Using accumulated circRNA-miRNA associations (CMAs) to construct computational models for predicting potential associations provides a crucial tool for accelerating the valid...
Gespeichert in:
Veröffentlicht in: | Journal of chemical information and modeling 2024-11, Vol.64 (21), p.8349-8360 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8360 |
---|---|
container_issue | 21 |
container_start_page | 8349 |
container_title | Journal of chemical information and modeling |
container_volume | 64 |
creator | Yin, Wenjing Wang, Shudong Zhang, Yuanyuan Qiao, Sibo Wu, Wenhao Li, Hengxiao |
description | One of the principal functions of circular RNA (circRNA) is to participate in gene regulation by sponging microRNAs (miRNAs). Using accumulated circRNA-miRNA associations (CMAs) to construct computational models for predicting potential associations provides a crucial tool for accelerating the validation of reliable associations through traditional experiments. Nevertheless, the current prediction models are constrained in their capacity to represent the higher-order relationships of CMAs and thus require further enhancement in terms of their predictive efficacy. In order to address this issue, we propose a new model based on multirelational hypergraph representation learning (MRHRL). This model employs hypergraphs to capture various higher-order relationships among RNAs and aggregates complementary information through a view attention mechanism. Furthermore, MRHRL introduces a hyperedge-level reconstruction task, jointly optimizing the prediction and reconstruction tasks within a unified framework to uncover potential information, thereby enhancing the model’s predictive and generalization capabilities. Experiments conducted on three real-world data sets demonstrate that MRHRL achieves satisfactory results in CMAs prediction, significantly outperforming existing prediction models. |
doi_str_mv | 10.1021/acs.jcim.4c01436 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3118835247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3118835247</sourcerecordid><originalsourceid>FETCH-LOGICAL-a247t-d012631a33d248d541e0653f5c780c82701981c690edc63657b486602d053c953</originalsourceid><addsrcrecordid>eNp1kEtLAzEURoMoVqt7VzLgxoVTb55NlqWoFeqDouBCGNJMWlPmZTKz6L93Om1dCG7yIOf7LjkIXWAYYCD4VpswWBmXD5gBzKg4QCeYMxUrAR-H-zNXoodOQ1gBUKoEOUY9qhglhKkT9PnUZLXzNtO1KwudRZN1Zf3S6-ormtnK22CLunuLplb7whXLaFH66NXb1Jl6czXOm9nzKM5du0ajEErjukQ4Q0cLnQV7vtv76P3-7m08iacvD4_j0TTWhA3rOAVMBMWa0pQwmXKGLQhOF9wMJRhJhoCVxEYosKkRVPDhnEkhgKTAqVGc9tH1trfy5XdjQ53kLhibZbqwZRMSirGUlLfDWvTqD7oqG99-fEMRKYFBVwhbyvgyBG8XSeVdrv06wZBszCet-WRjPtmZbyOXu-Jmntv0N7BX3QI3W6CL7of-2_cDrkON-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3128804095</pqid></control><display><type>article</type><title>Multirelational Hypergraph Representation Learning for Predicting circRNA-miRNA Associations</title><source>MEDLINE</source><source>American Chemical Society Publications</source><creator>Yin, Wenjing ; Wang, Shudong ; Zhang, Yuanyuan ; Qiao, Sibo ; Wu, Wenhao ; Li, Hengxiao</creator><creatorcontrib>Yin, Wenjing ; Wang, Shudong ; Zhang, Yuanyuan ; Qiao, Sibo ; Wu, Wenhao ; Li, Hengxiao</creatorcontrib><description>One of the principal functions of circular RNA (circRNA) is to participate in gene regulation by sponging microRNAs (miRNAs). Using accumulated circRNA-miRNA associations (CMAs) to construct computational models for predicting potential associations provides a crucial tool for accelerating the validation of reliable associations through traditional experiments. Nevertheless, the current prediction models are constrained in their capacity to represent the higher-order relationships of CMAs and thus require further enhancement in terms of their predictive efficacy. In order to address this issue, we propose a new model based on multirelational hypergraph representation learning (MRHRL). This model employs hypergraphs to capture various higher-order relationships among RNAs and aggregates complementary information through a view attention mechanism. Furthermore, MRHRL introduces a hyperedge-level reconstruction task, jointly optimizing the prediction and reconstruction tasks within a unified framework to uncover potential information, thereby enhancing the model’s predictive and generalization capabilities. Experiments conducted on three real-world data sets demonstrate that MRHRL achieves satisfactory results in CMAs prediction, significantly outperforming existing prediction models.</description><identifier>ISSN: 1549-9596</identifier><identifier>ISSN: 1549-960X</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.4c01436</identifier><identifier>PMID: 39432249</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Bioinformatics ; Computational Biology - methods ; Graph theory ; Graphs ; Humans ; Learning ; Machine Learning ; MicroRNAs ; MicroRNAs - genetics ; Prediction models ; Predictions ; Reconstruction ; Representations ; RNA, Circular - genetics ; Software</subject><ispartof>Journal of chemical information and modeling, 2024-11, Vol.64 (21), p.8349-8360</ispartof><rights>2024 American Chemical Society</rights><rights>Copyright American Chemical Society Nov 11, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a247t-d012631a33d248d541e0653f5c780c82701981c690edc63657b486602d053c953</cites><orcidid>0000-0003-3935-3201 ; 0000-0002-8837-9195 ; 0009-0002-9699-7169</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jcim.4c01436$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jcim.4c01436$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39432249$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yin, Wenjing</creatorcontrib><creatorcontrib>Wang, Shudong</creatorcontrib><creatorcontrib>Zhang, Yuanyuan</creatorcontrib><creatorcontrib>Qiao, Sibo</creatorcontrib><creatorcontrib>Wu, Wenhao</creatorcontrib><creatorcontrib>Li, Hengxiao</creatorcontrib><title>Multirelational Hypergraph Representation Learning for Predicting circRNA-miRNA Associations</title><title>Journal of chemical information and modeling</title><addtitle>J. Chem. Inf. Model</addtitle><description>One of the principal functions of circular RNA (circRNA) is to participate in gene regulation by sponging microRNAs (miRNAs). Using accumulated circRNA-miRNA associations (CMAs) to construct computational models for predicting potential associations provides a crucial tool for accelerating the validation of reliable associations through traditional experiments. Nevertheless, the current prediction models are constrained in their capacity to represent the higher-order relationships of CMAs and thus require further enhancement in terms of their predictive efficacy. In order to address this issue, we propose a new model based on multirelational hypergraph representation learning (MRHRL). This model employs hypergraphs to capture various higher-order relationships among RNAs and aggregates complementary information through a view attention mechanism. Furthermore, MRHRL introduces a hyperedge-level reconstruction task, jointly optimizing the prediction and reconstruction tasks within a unified framework to uncover potential information, thereby enhancing the model’s predictive and generalization capabilities. Experiments conducted on three real-world data sets demonstrate that MRHRL achieves satisfactory results in CMAs prediction, significantly outperforming existing prediction models.</description><subject>Bioinformatics</subject><subject>Computational Biology - methods</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Humans</subject><subject>Learning</subject><subject>Machine Learning</subject><subject>MicroRNAs</subject><subject>MicroRNAs - genetics</subject><subject>Prediction models</subject><subject>Predictions</subject><subject>Reconstruction</subject><subject>Representations</subject><subject>RNA, Circular - genetics</subject><subject>Software</subject><issn>1549-9596</issn><issn>1549-960X</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kEtLAzEURoMoVqt7VzLgxoVTb55NlqWoFeqDouBCGNJMWlPmZTKz6L93Om1dCG7yIOf7LjkIXWAYYCD4VpswWBmXD5gBzKg4QCeYMxUrAR-H-zNXoodOQ1gBUKoEOUY9qhglhKkT9PnUZLXzNtO1KwudRZN1Zf3S6-ormtnK22CLunuLplb7whXLaFH66NXb1Jl6czXOm9nzKM5du0ajEErjukQ4Q0cLnQV7vtv76P3-7m08iacvD4_j0TTWhA3rOAVMBMWa0pQwmXKGLQhOF9wMJRhJhoCVxEYosKkRVPDhnEkhgKTAqVGc9tH1trfy5XdjQ53kLhibZbqwZRMSirGUlLfDWvTqD7oqG99-fEMRKYFBVwhbyvgyBG8XSeVdrv06wZBszCet-WRjPtmZbyOXu-Jmntv0N7BX3QI3W6CL7of-2_cDrkON-g</recordid><startdate>20241111</startdate><enddate>20241111</enddate><creator>Yin, Wenjing</creator><creator>Wang, Shudong</creator><creator>Zhang, Yuanyuan</creator><creator>Qiao, Sibo</creator><creator>Wu, Wenhao</creator><creator>Li, Hengxiao</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3935-3201</orcidid><orcidid>https://orcid.org/0000-0002-8837-9195</orcidid><orcidid>https://orcid.org/0009-0002-9699-7169</orcidid></search><sort><creationdate>20241111</creationdate><title>Multirelational Hypergraph Representation Learning for Predicting circRNA-miRNA Associations</title><author>Yin, Wenjing ; Wang, Shudong ; Zhang, Yuanyuan ; Qiao, Sibo ; Wu, Wenhao ; Li, Hengxiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a247t-d012631a33d248d541e0653f5c780c82701981c690edc63657b486602d053c953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bioinformatics</topic><topic>Computational Biology - methods</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Humans</topic><topic>Learning</topic><topic>Machine Learning</topic><topic>MicroRNAs</topic><topic>MicroRNAs - genetics</topic><topic>Prediction models</topic><topic>Predictions</topic><topic>Reconstruction</topic><topic>Representations</topic><topic>RNA, Circular - genetics</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Wenjing</creatorcontrib><creatorcontrib>Wang, Shudong</creatorcontrib><creatorcontrib>Zhang, Yuanyuan</creatorcontrib><creatorcontrib>Qiao, Sibo</creatorcontrib><creatorcontrib>Wu, Wenhao</creatorcontrib><creatorcontrib>Li, Hengxiao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, Wenjing</au><au>Wang, Shudong</au><au>Zhang, Yuanyuan</au><au>Qiao, Sibo</au><au>Wu, Wenhao</au><au>Li, Hengxiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multirelational Hypergraph Representation Learning for Predicting circRNA-miRNA Associations</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J. Chem. Inf. Model</addtitle><date>2024-11-11</date><risdate>2024</risdate><volume>64</volume><issue>21</issue><spage>8349</spage><epage>8360</epage><pages>8349-8360</pages><issn>1549-9596</issn><issn>1549-960X</issn><eissn>1549-960X</eissn><abstract>One of the principal functions of circular RNA (circRNA) is to participate in gene regulation by sponging microRNAs (miRNAs). Using accumulated circRNA-miRNA associations (CMAs) to construct computational models for predicting potential associations provides a crucial tool for accelerating the validation of reliable associations through traditional experiments. Nevertheless, the current prediction models are constrained in their capacity to represent the higher-order relationships of CMAs and thus require further enhancement in terms of their predictive efficacy. In order to address this issue, we propose a new model based on multirelational hypergraph representation learning (MRHRL). This model employs hypergraphs to capture various higher-order relationships among RNAs and aggregates complementary information through a view attention mechanism. Furthermore, MRHRL introduces a hyperedge-level reconstruction task, jointly optimizing the prediction and reconstruction tasks within a unified framework to uncover potential information, thereby enhancing the model’s predictive and generalization capabilities. Experiments conducted on three real-world data sets demonstrate that MRHRL achieves satisfactory results in CMAs prediction, significantly outperforming existing prediction models.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39432249</pmid><doi>10.1021/acs.jcim.4c01436</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3935-3201</orcidid><orcidid>https://orcid.org/0000-0002-8837-9195</orcidid><orcidid>https://orcid.org/0009-0002-9699-7169</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9596 |
ispartof | Journal of chemical information and modeling, 2024-11, Vol.64 (21), p.8349-8360 |
issn | 1549-9596 1549-960X 1549-960X |
language | eng |
recordid | cdi_proquest_miscellaneous_3118835247 |
source | MEDLINE; American Chemical Society Publications |
subjects | Bioinformatics Computational Biology - methods Graph theory Graphs Humans Learning Machine Learning MicroRNAs MicroRNAs - genetics Prediction models Predictions Reconstruction Representations RNA, Circular - genetics Software |
title | Multirelational Hypergraph Representation Learning for Predicting circRNA-miRNA Associations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T18%3A47%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multirelational%20Hypergraph%20Representation%20Learning%20for%20Predicting%20circRNA-miRNA%20Associations&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Yin,%20Wenjing&rft.date=2024-11-11&rft.volume=64&rft.issue=21&rft.spage=8349&rft.epage=8360&rft.pages=8349-8360&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.4c01436&rft_dat=%3Cproquest_cross%3E3118835247%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3128804095&rft_id=info:pmid/39432249&rfr_iscdi=true |