Multirelational Hypergraph Representation Learning for Predicting circRNA-miRNA Associations

One of the principal functions of circular RNA (circRNA) is to participate in gene regulation by sponging microRNAs (miRNAs). Using accumulated circRNA-miRNA associations (CMAs) to construct computational models for predicting potential associations provides a crucial tool for accelerating the valid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical information and modeling 2024-11, Vol.64 (21), p.8349-8360
Hauptverfasser: Yin, Wenjing, Wang, Shudong, Zhang, Yuanyuan, Qiao, Sibo, Wu, Wenhao, Li, Hengxiao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8360
container_issue 21
container_start_page 8349
container_title Journal of chemical information and modeling
container_volume 64
creator Yin, Wenjing
Wang, Shudong
Zhang, Yuanyuan
Qiao, Sibo
Wu, Wenhao
Li, Hengxiao
description One of the principal functions of circular RNA (circRNA) is to participate in gene regulation by sponging microRNAs (miRNAs). Using accumulated circRNA-miRNA associations (CMAs) to construct computational models for predicting potential associations provides a crucial tool for accelerating the validation of reliable associations through traditional experiments. Nevertheless, the current prediction models are constrained in their capacity to represent the higher-order relationships of CMAs and thus require further enhancement in terms of their predictive efficacy. In order to address this issue, we propose a new model based on multirelational hypergraph representation learning (MRHRL). This model employs hypergraphs to capture various higher-order relationships among RNAs and aggregates complementary information through a view attention mechanism. Furthermore, MRHRL introduces a hyperedge-level reconstruction task, jointly optimizing the prediction and reconstruction tasks within a unified framework to uncover potential information, thereby enhancing the model’s predictive and generalization capabilities. Experiments conducted on three real-world data sets demonstrate that MRHRL achieves satisfactory results in CMAs prediction, significantly outperforming existing prediction models.
doi_str_mv 10.1021/acs.jcim.4c01436
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3118835247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3118835247</sourcerecordid><originalsourceid>FETCH-LOGICAL-a247t-d012631a33d248d541e0653f5c780c82701981c690edc63657b486602d053c953</originalsourceid><addsrcrecordid>eNp1kEtLAzEURoMoVqt7VzLgxoVTb55NlqWoFeqDouBCGNJMWlPmZTKz6L93Om1dCG7yIOf7LjkIXWAYYCD4VpswWBmXD5gBzKg4QCeYMxUrAR-H-zNXoodOQ1gBUKoEOUY9qhglhKkT9PnUZLXzNtO1KwudRZN1Zf3S6-ormtnK22CLunuLplb7whXLaFH66NXb1Jl6czXOm9nzKM5du0ajEErjukQ4Q0cLnQV7vtv76P3-7m08iacvD4_j0TTWhA3rOAVMBMWa0pQwmXKGLQhOF9wMJRhJhoCVxEYosKkRVPDhnEkhgKTAqVGc9tH1trfy5XdjQ53kLhibZbqwZRMSirGUlLfDWvTqD7oqG99-fEMRKYFBVwhbyvgyBG8XSeVdrv06wZBszCet-WRjPtmZbyOXu-Jmntv0N7BX3QI3W6CL7of-2_cDrkON-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3128804095</pqid></control><display><type>article</type><title>Multirelational Hypergraph Representation Learning for Predicting circRNA-miRNA Associations</title><source>MEDLINE</source><source>American Chemical Society Publications</source><creator>Yin, Wenjing ; Wang, Shudong ; Zhang, Yuanyuan ; Qiao, Sibo ; Wu, Wenhao ; Li, Hengxiao</creator><creatorcontrib>Yin, Wenjing ; Wang, Shudong ; Zhang, Yuanyuan ; Qiao, Sibo ; Wu, Wenhao ; Li, Hengxiao</creatorcontrib><description>One of the principal functions of circular RNA (circRNA) is to participate in gene regulation by sponging microRNAs (miRNAs). Using accumulated circRNA-miRNA associations (CMAs) to construct computational models for predicting potential associations provides a crucial tool for accelerating the validation of reliable associations through traditional experiments. Nevertheless, the current prediction models are constrained in their capacity to represent the higher-order relationships of CMAs and thus require further enhancement in terms of their predictive efficacy. In order to address this issue, we propose a new model based on multirelational hypergraph representation learning (MRHRL). This model employs hypergraphs to capture various higher-order relationships among RNAs and aggregates complementary information through a view attention mechanism. Furthermore, MRHRL introduces a hyperedge-level reconstruction task, jointly optimizing the prediction and reconstruction tasks within a unified framework to uncover potential information, thereby enhancing the model’s predictive and generalization capabilities. Experiments conducted on three real-world data sets demonstrate that MRHRL achieves satisfactory results in CMAs prediction, significantly outperforming existing prediction models.</description><identifier>ISSN: 1549-9596</identifier><identifier>ISSN: 1549-960X</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.4c01436</identifier><identifier>PMID: 39432249</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Bioinformatics ; Computational Biology - methods ; Graph theory ; Graphs ; Humans ; Learning ; Machine Learning ; MicroRNAs ; MicroRNAs - genetics ; Prediction models ; Predictions ; Reconstruction ; Representations ; RNA, Circular - genetics ; Software</subject><ispartof>Journal of chemical information and modeling, 2024-11, Vol.64 (21), p.8349-8360</ispartof><rights>2024 American Chemical Society</rights><rights>Copyright American Chemical Society Nov 11, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a247t-d012631a33d248d541e0653f5c780c82701981c690edc63657b486602d053c953</cites><orcidid>0000-0003-3935-3201 ; 0000-0002-8837-9195 ; 0009-0002-9699-7169</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jcim.4c01436$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jcim.4c01436$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39432249$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yin, Wenjing</creatorcontrib><creatorcontrib>Wang, Shudong</creatorcontrib><creatorcontrib>Zhang, Yuanyuan</creatorcontrib><creatorcontrib>Qiao, Sibo</creatorcontrib><creatorcontrib>Wu, Wenhao</creatorcontrib><creatorcontrib>Li, Hengxiao</creatorcontrib><title>Multirelational Hypergraph Representation Learning for Predicting circRNA-miRNA Associations</title><title>Journal of chemical information and modeling</title><addtitle>J. Chem. Inf. Model</addtitle><description>One of the principal functions of circular RNA (circRNA) is to participate in gene regulation by sponging microRNAs (miRNAs). Using accumulated circRNA-miRNA associations (CMAs) to construct computational models for predicting potential associations provides a crucial tool for accelerating the validation of reliable associations through traditional experiments. Nevertheless, the current prediction models are constrained in their capacity to represent the higher-order relationships of CMAs and thus require further enhancement in terms of their predictive efficacy. In order to address this issue, we propose a new model based on multirelational hypergraph representation learning (MRHRL). This model employs hypergraphs to capture various higher-order relationships among RNAs and aggregates complementary information through a view attention mechanism. Furthermore, MRHRL introduces a hyperedge-level reconstruction task, jointly optimizing the prediction and reconstruction tasks within a unified framework to uncover potential information, thereby enhancing the model’s predictive and generalization capabilities. Experiments conducted on three real-world data sets demonstrate that MRHRL achieves satisfactory results in CMAs prediction, significantly outperforming existing prediction models.</description><subject>Bioinformatics</subject><subject>Computational Biology - methods</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Humans</subject><subject>Learning</subject><subject>Machine Learning</subject><subject>MicroRNAs</subject><subject>MicroRNAs - genetics</subject><subject>Prediction models</subject><subject>Predictions</subject><subject>Reconstruction</subject><subject>Representations</subject><subject>RNA, Circular - genetics</subject><subject>Software</subject><issn>1549-9596</issn><issn>1549-960X</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kEtLAzEURoMoVqt7VzLgxoVTb55NlqWoFeqDouBCGNJMWlPmZTKz6L93Om1dCG7yIOf7LjkIXWAYYCD4VpswWBmXD5gBzKg4QCeYMxUrAR-H-zNXoodOQ1gBUKoEOUY9qhglhKkT9PnUZLXzNtO1KwudRZN1Zf3S6-ormtnK22CLunuLplb7whXLaFH66NXb1Jl6czXOm9nzKM5du0ajEErjukQ4Q0cLnQV7vtv76P3-7m08iacvD4_j0TTWhA3rOAVMBMWa0pQwmXKGLQhOF9wMJRhJhoCVxEYosKkRVPDhnEkhgKTAqVGc9tH1trfy5XdjQ53kLhibZbqwZRMSirGUlLfDWvTqD7oqG99-fEMRKYFBVwhbyvgyBG8XSeVdrv06wZBszCet-WRjPtmZbyOXu-Jmntv0N7BX3QI3W6CL7of-2_cDrkON-g</recordid><startdate>20241111</startdate><enddate>20241111</enddate><creator>Yin, Wenjing</creator><creator>Wang, Shudong</creator><creator>Zhang, Yuanyuan</creator><creator>Qiao, Sibo</creator><creator>Wu, Wenhao</creator><creator>Li, Hengxiao</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3935-3201</orcidid><orcidid>https://orcid.org/0000-0002-8837-9195</orcidid><orcidid>https://orcid.org/0009-0002-9699-7169</orcidid></search><sort><creationdate>20241111</creationdate><title>Multirelational Hypergraph Representation Learning for Predicting circRNA-miRNA Associations</title><author>Yin, Wenjing ; Wang, Shudong ; Zhang, Yuanyuan ; Qiao, Sibo ; Wu, Wenhao ; Li, Hengxiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a247t-d012631a33d248d541e0653f5c780c82701981c690edc63657b486602d053c953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bioinformatics</topic><topic>Computational Biology - methods</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Humans</topic><topic>Learning</topic><topic>Machine Learning</topic><topic>MicroRNAs</topic><topic>MicroRNAs - genetics</topic><topic>Prediction models</topic><topic>Predictions</topic><topic>Reconstruction</topic><topic>Representations</topic><topic>RNA, Circular - genetics</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Wenjing</creatorcontrib><creatorcontrib>Wang, Shudong</creatorcontrib><creatorcontrib>Zhang, Yuanyuan</creatorcontrib><creatorcontrib>Qiao, Sibo</creatorcontrib><creatorcontrib>Wu, Wenhao</creatorcontrib><creatorcontrib>Li, Hengxiao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, Wenjing</au><au>Wang, Shudong</au><au>Zhang, Yuanyuan</au><au>Qiao, Sibo</au><au>Wu, Wenhao</au><au>Li, Hengxiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multirelational Hypergraph Representation Learning for Predicting circRNA-miRNA Associations</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J. Chem. Inf. Model</addtitle><date>2024-11-11</date><risdate>2024</risdate><volume>64</volume><issue>21</issue><spage>8349</spage><epage>8360</epage><pages>8349-8360</pages><issn>1549-9596</issn><issn>1549-960X</issn><eissn>1549-960X</eissn><abstract>One of the principal functions of circular RNA (circRNA) is to participate in gene regulation by sponging microRNAs (miRNAs). Using accumulated circRNA-miRNA associations (CMAs) to construct computational models for predicting potential associations provides a crucial tool for accelerating the validation of reliable associations through traditional experiments. Nevertheless, the current prediction models are constrained in their capacity to represent the higher-order relationships of CMAs and thus require further enhancement in terms of their predictive efficacy. In order to address this issue, we propose a new model based on multirelational hypergraph representation learning (MRHRL). This model employs hypergraphs to capture various higher-order relationships among RNAs and aggregates complementary information through a view attention mechanism. Furthermore, MRHRL introduces a hyperedge-level reconstruction task, jointly optimizing the prediction and reconstruction tasks within a unified framework to uncover potential information, thereby enhancing the model’s predictive and generalization capabilities. Experiments conducted on three real-world data sets demonstrate that MRHRL achieves satisfactory results in CMAs prediction, significantly outperforming existing prediction models.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39432249</pmid><doi>10.1021/acs.jcim.4c01436</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3935-3201</orcidid><orcidid>https://orcid.org/0000-0002-8837-9195</orcidid><orcidid>https://orcid.org/0009-0002-9699-7169</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1549-9596
ispartof Journal of chemical information and modeling, 2024-11, Vol.64 (21), p.8349-8360
issn 1549-9596
1549-960X
1549-960X
language eng
recordid cdi_proquest_miscellaneous_3118835247
source MEDLINE; American Chemical Society Publications
subjects Bioinformatics
Computational Biology - methods
Graph theory
Graphs
Humans
Learning
Machine Learning
MicroRNAs
MicroRNAs - genetics
Prediction models
Predictions
Reconstruction
Representations
RNA, Circular - genetics
Software
title Multirelational Hypergraph Representation Learning for Predicting circRNA-miRNA Associations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T18%3A47%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multirelational%20Hypergraph%20Representation%20Learning%20for%20Predicting%20circRNA-miRNA%20Associations&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Yin,%20Wenjing&rft.date=2024-11-11&rft.volume=64&rft.issue=21&rft.spage=8349&rft.epage=8360&rft.pages=8349-8360&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.4c01436&rft_dat=%3Cproquest_cross%3E3118835247%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3128804095&rft_id=info:pmid/39432249&rfr_iscdi=true