Editorial Commentary: Biomedical Research Investigating Artificial Intelligence Large Language Models Needs to Move Beyond Measuring Accuracy and Focus on Improving Patient Care

Orthopaedic surgeons are fascinated with artificial intelligence (AI). Since the release of ChatGPT to the general public on November 30, 2022, there have been a flurry of articles regarding use of large language models (LLMs) in our field. Most of these revolve around the accuracy of the models reg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arthroscopy 2024-10
1. Verfasser: Balazs, George C
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Arthroscopy
container_volume
creator Balazs, George C
description Orthopaedic surgeons are fascinated with artificial intelligence (AI). Since the release of ChatGPT to the general public on November 30, 2022, there have been a flurry of articles regarding use of large language models (LLMs) in our field. Most of these revolve around the accuracy of the models regarding orthopaedic topics (spoiler alert: the accuracy is good, yet unreliable, but improving). Unfortunately, the research around LLM is largely repetitive, applying the LLMs to the same essential tasks. LLM AI systems show amazing capabilities in data processing, collating and organizing and recognizing patterns. Now, research scientists need to innovate. Journals must encourage authors to investigate how AI systems can improve patient care.
doi_str_mv 10.1016/j.arthro.2024.10.010
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3118835069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0749806324007941</els_id><sourcerecordid>3118835069</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1566-cb2da2d4caed2e7377d68a9f29f1afc3d6c82d23222780bdfac7ed1dfa5404903</originalsourceid><addsrcrecordid>eNp9Uctu1DAUtRCITgt_gJCXbDL4kXESFkjtqC0jTQFVZW15rm9Sj5K42M5I81n8IQ5TWLLxtY_PfZ1DyDvOlpxx9XG_NCE9Br8UTJQZWjLOXpAFXwlVSCH5S7JgVdkUNVPyjJzHuGeMSVnL1-RMNqWomkYtyK9r65IPzvR07YcBx2TC8RO9cn5A6yDD9xjRBHikm_GAMbnOJDd29DIk1zqYEzdjwr53HY6AdGtCN59jN5l8ufMW-0i_ItpIk8_vA9IrPPrR0js0cQp_igFMwcCRmgzfeJgi9SPdDE_BH-b_77lnHo2uTcA35FVr-ohvn-MF-XFz_bD-Umy_3W7Wl9sC-EqpAnbCGmFLMGgFVrKqrKpN04qm5aYFaRXUwgophKhqtrOtgQotz3FVsrJh8oJ8ONXNQ_yc8uZ6cBHyomZEP0UtOa9ruWKqydTyRIXgYwzY6qfghiyk5kzPZum9PpmlZ7NmNJuV094_d5h2We1_SX_dyYTPJ0KWEA8Og47gZpWtCwhJW-_-3-E35o2row</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3118835069</pqid></control><display><type>article</type><title>Editorial Commentary: Biomedical Research Investigating Artificial Intelligence Large Language Models Needs to Move Beyond Measuring Accuracy and Focus on Improving Patient Care</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Balazs, George C</creator><contributor>Balazs, George C.</contributor><creatorcontrib>Balazs, George C ; Balazs, George C.</creatorcontrib><description>Orthopaedic surgeons are fascinated with artificial intelligence (AI). Since the release of ChatGPT to the general public on November 30, 2022, there have been a flurry of articles regarding use of large language models (LLMs) in our field. Most of these revolve around the accuracy of the models regarding orthopaedic topics (spoiler alert: the accuracy is good, yet unreliable, but improving). Unfortunately, the research around LLM is largely repetitive, applying the LLMs to the same essential tasks. LLM AI systems show amazing capabilities in data processing, collating and organizing and recognizing patterns. Now, research scientists need to innovate. Journals must encourage authors to investigate how AI systems can improve patient care.</description><identifier>ISSN: 0749-8063</identifier><identifier>ISSN: 1526-3231</identifier><identifier>EISSN: 1526-3231</identifier><identifier>DOI: 10.1016/j.arthro.2024.10.010</identifier><identifier>PMID: 39427996</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><ispartof>Arthroscopy, 2024-10</ispartof><rights>2024</rights><rights>Published by Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1566-cb2da2d4caed2e7377d68a9f29f1afc3d6c82d23222780bdfac7ed1dfa5404903</cites><orcidid>0000-0003-2822-2986</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.arthro.2024.10.010$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39427996$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Balazs, George C.</contributor><creatorcontrib>Balazs, George C</creatorcontrib><title>Editorial Commentary: Biomedical Research Investigating Artificial Intelligence Large Language Models Needs to Move Beyond Measuring Accuracy and Focus on Improving Patient Care</title><title>Arthroscopy</title><addtitle>Arthroscopy</addtitle><description>Orthopaedic surgeons are fascinated with artificial intelligence (AI). Since the release of ChatGPT to the general public on November 30, 2022, there have been a flurry of articles regarding use of large language models (LLMs) in our field. Most of these revolve around the accuracy of the models regarding orthopaedic topics (spoiler alert: the accuracy is good, yet unreliable, but improving). Unfortunately, the research around LLM is largely repetitive, applying the LLMs to the same essential tasks. LLM AI systems show amazing capabilities in data processing, collating and organizing and recognizing patterns. Now, research scientists need to innovate. Journals must encourage authors to investigate how AI systems can improve patient care.</description><issn>0749-8063</issn><issn>1526-3231</issn><issn>1526-3231</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9Uctu1DAUtRCITgt_gJCXbDL4kXESFkjtqC0jTQFVZW15rm9Sj5K42M5I81n8IQ5TWLLxtY_PfZ1DyDvOlpxx9XG_NCE9Br8UTJQZWjLOXpAFXwlVSCH5S7JgVdkUNVPyjJzHuGeMSVnL1-RMNqWomkYtyK9r65IPzvR07YcBx2TC8RO9cn5A6yDD9xjRBHikm_GAMbnOJDd29DIk1zqYEzdjwr53HY6AdGtCN59jN5l8ufMW-0i_ItpIk8_vA9IrPPrR0js0cQp_igFMwcCRmgzfeJgi9SPdDE_BH-b_77lnHo2uTcA35FVr-ohvn-MF-XFz_bD-Umy_3W7Wl9sC-EqpAnbCGmFLMGgFVrKqrKpN04qm5aYFaRXUwgophKhqtrOtgQotz3FVsrJh8oJ8ONXNQ_yc8uZ6cBHyomZEP0UtOa9ruWKqydTyRIXgYwzY6qfghiyk5kzPZum9PpmlZ7NmNJuV094_d5h2We1_SX_dyYTPJ0KWEA8Og47gZpWtCwhJW-_-3-E35o2row</recordid><startdate>20241018</startdate><enddate>20241018</enddate><creator>Balazs, George C</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2822-2986</orcidid></search><sort><creationdate>20241018</creationdate><title>Editorial Commentary: Biomedical Research Investigating Artificial Intelligence Large Language Models Needs to Move Beyond Measuring Accuracy and Focus on Improving Patient Care</title><author>Balazs, George C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1566-cb2da2d4caed2e7377d68a9f29f1afc3d6c82d23222780bdfac7ed1dfa5404903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Balazs, George C</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Arthroscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balazs, George C</au><au>Balazs, George C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Editorial Commentary: Biomedical Research Investigating Artificial Intelligence Large Language Models Needs to Move Beyond Measuring Accuracy and Focus on Improving Patient Care</atitle><jtitle>Arthroscopy</jtitle><addtitle>Arthroscopy</addtitle><date>2024-10-18</date><risdate>2024</risdate><issn>0749-8063</issn><issn>1526-3231</issn><eissn>1526-3231</eissn><abstract>Orthopaedic surgeons are fascinated with artificial intelligence (AI). Since the release of ChatGPT to the general public on November 30, 2022, there have been a flurry of articles regarding use of large language models (LLMs) in our field. Most of these revolve around the accuracy of the models regarding orthopaedic topics (spoiler alert: the accuracy is good, yet unreliable, but improving). Unfortunately, the research around LLM is largely repetitive, applying the LLMs to the same essential tasks. LLM AI systems show amazing capabilities in data processing, collating and organizing and recognizing patterns. Now, research scientists need to innovate. Journals must encourage authors to investigate how AI systems can improve patient care.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>39427996</pmid><doi>10.1016/j.arthro.2024.10.010</doi><orcidid>https://orcid.org/0000-0003-2822-2986</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0749-8063
ispartof Arthroscopy, 2024-10
issn 0749-8063
1526-3231
1526-3231
language eng
recordid cdi_proquest_miscellaneous_3118835069
source ScienceDirect Journals (5 years ago - present)
title Editorial Commentary: Biomedical Research Investigating Artificial Intelligence Large Language Models Needs to Move Beyond Measuring Accuracy and Focus on Improving Patient Care
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T02%3A09%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Editorial%20Commentary:%20Biomedical%20Research%20Investigating%20Artificial%20Intelligence%20Large%20Language%20Models%20Needs%20to%20Move%20Beyond%20Measuring%20Accuracy%20and%20Focus%20on%20Improving%20Patient%20Care&rft.jtitle=Arthroscopy&rft.au=Balazs,%20George%20C&rft.date=2024-10-18&rft.issn=0749-8063&rft.eissn=1526-3231&rft_id=info:doi/10.1016/j.arthro.2024.10.010&rft_dat=%3Cproquest_cross%3E3118835069%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3118835069&rft_id=info:pmid/39427996&rft_els_id=S0749806324007941&rfr_iscdi=true