An efficient interpretable stacking ensemble model for lung cancer prognosis

Lung cancer significantly contributes to global cancer mortality, posing challenges in clinical management. Early detection and accurate prognosis are crucial for improving patient outcomes. This study develops an interpretable stacking ensemble model (SEM) for lung cancer prognosis prediction and i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational biology and chemistry 2024-12, Vol.113, p.108248, Article 108248
Hauptverfasser: Arif, Umair, Zhang, Chunxia, Hussain, Sajid, Abbasi, Abdul Rauf
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!