Understanding the probiotic potential of Lactobacillus plantarum: Antioxidant capacity, non-specific immunity and intestinal microbiota improvement effects on Manila clam Ruditapes philippinarum
Lactic acid bacteria (LAB) have beneficial effects on aquatic animals, improving their immune system and intestinal microbiota. Nevertheless, the probiotic effects of LAB on the Manila clam Ruditapes philippinarum remain poorly understood. Herein, the effects of administering Lactobacillus plantarum...
Gespeichert in:
Veröffentlicht in: | Fish & shellfish immunology 2024-11, Vol.154, p.109971, Article 109971 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 109971 |
container_title | Fish & shellfish immunology |
container_volume | 154 |
creator | Liu, Longzhen Zhuang, Haonan Tian, Xiangli Zhou, Yujia Wang, Fangyi Liu, Zirong Li, Jiamin Jiao, Minghui Xue, Suyan Li, Jiaqi Jiang, Weiwei Mao, Yuze |
description | Lactic acid bacteria (LAB) have beneficial effects on aquatic animals, improving their immune system and intestinal microbiota. Nevertheless, the probiotic effects of LAB on the Manila clam Ruditapes philippinarum remain poorly understood. Herein, the effects of administering Lactobacillus plantarum at final doses of 1 × 105 CFU/L (T5 group), 1 × 107 CFU/L (T7 group), and 1 × 109 CFU/L (T9 group) in the rearing water for eight weeks were evaluated for the antioxidant capacity, non-specific immunity, resistance to Vibrio parahaemolyticus infection, and intestinal microbiota of R. philippinarum. The rearing water without the addition of L. plantarum served as a control. The results showed that the T7 and T9 groups demonstrated a significant elevation in the disease resistance of clams against V. parahaemolyticus, in the activities of alkaline phosphatase and lysozyme in the hepatopancreas, and in the expression of antioxidant- and immune-related genes, including SOD, GPx, and GST. Meanwhile, the T7 group showed a significant enhancement in superoxide dismutase and catalase activities and CAT expression, while the T9 group experienced a remarkable elevation in reduced glutathione content. Only catalase activity was markedly elevated in the T5 group. The expression of SOD, CAT, GPx, and GST was significantly elevated in three treatment groups following the V. parahaemolyticus challenge. The T7 group exhibited a significant increase in intestinal microbiota richness. Significant increases were noted in Firmicutes abundance across all three treatment groups and in Actinobacteriota in the T5 and T7 groups. Additionally, the opportunistic pathogen Escherichia-Shigella abundance significantly decreased in three treatment groups. Furthermore, administration of 1 × 107 CFU/L L. plantarum enhanced the stability of the intestinal microecosystem, whereas a dose of 1 × 109 CFU/L might have a negative effect. The application of three doses of L. plantarum significantly enhanced intestinal microbiota functions related to the immune response and oxidative stress regulation, while a higher dose (1 × 109 CFU/L) might inhibit several functions. In conclusion, the application of L. plantarum in the rearing water exerted beneficial effects on the antioxidant capacity, non-specific immunity, resistance to V. parahaemolyticus, and the intestinal microbiota stability and functions of R. philippinarum. The beneficial effects of L. plantarum on R. philippinarum were dose-dependent, a |
doi_str_mv | 10.1016/j.fsi.2024.109971 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3118304838</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1050464824006168</els_id><sourcerecordid>3118304838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c235t-49e88cf2f7fc5084a170082432b8269cbdf8c74a3a8e3284517c89b714558f4d3</originalsourceid><addsrcrecordid>eNp9UU1v1TAQjBCIlsIP4IJ85EAeduwkDpyqio9KD1Wq6NlynDXdp8QOsVO1f49fxj6lcOzJ69XszM5OUbwVfCe4aD4edj7hruKVon_XteJZcUpFXXadap8f65qXqlH6pHiV0oFz3siGvyxOZKcq2XF1Wvy5CQMsKdswYPjF8i2weYk9xoyOzTFDyGhHFj3bW5djbx2O45rYPNqQ7bJOn9g5QeI9DtRgzs6EyA8fWIihTDM49ESE07QGajOSYRgypIyBaCd0m5glCOnewUSCDLwHlxOLgf2wAUfL3Ggndr0OmO0MpH6LI84zcdAGr4sX3o4J3jy-Z8XN1y8_L76X-6tvlxfn-9JVss6l6kBr5yvfeldzraxoOdeVklWvq6Zz_eC1a5WVVoOstKpF63TXt0LVtfZqkGfF-42XFv29kgUzYXIw0iUgrslIIbTkSktNULFByV5KC3gzLzjZ5cEIbo7RmYOh6MwxOrNFRzPvHunXfoLh_8S_rAjweQMAmbxDWExyCMHBgAudywwRn6D_C-AYr1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3118304838</pqid></control><display><type>article</type><title>Understanding the probiotic potential of Lactobacillus plantarum: Antioxidant capacity, non-specific immunity and intestinal microbiota improvement effects on Manila clam Ruditapes philippinarum</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Liu, Longzhen ; Zhuang, Haonan ; Tian, Xiangli ; Zhou, Yujia ; Wang, Fangyi ; Liu, Zirong ; Li, Jiamin ; Jiao, Minghui ; Xue, Suyan ; Li, Jiaqi ; Jiang, Weiwei ; Mao, Yuze</creator><creatorcontrib>Liu, Longzhen ; Zhuang, Haonan ; Tian, Xiangli ; Zhou, Yujia ; Wang, Fangyi ; Liu, Zirong ; Li, Jiamin ; Jiao, Minghui ; Xue, Suyan ; Li, Jiaqi ; Jiang, Weiwei ; Mao, Yuze</creatorcontrib><description>Lactic acid bacteria (LAB) have beneficial effects on aquatic animals, improving their immune system and intestinal microbiota. Nevertheless, the probiotic effects of LAB on the Manila clam Ruditapes philippinarum remain poorly understood. Herein, the effects of administering Lactobacillus plantarum at final doses of 1 × 105 CFU/L (T5 group), 1 × 107 CFU/L (T7 group), and 1 × 109 CFU/L (T9 group) in the rearing water for eight weeks were evaluated for the antioxidant capacity, non-specific immunity, resistance to Vibrio parahaemolyticus infection, and intestinal microbiota of R. philippinarum. The rearing water without the addition of L. plantarum served as a control. The results showed that the T7 and T9 groups demonstrated a significant elevation in the disease resistance of clams against V. parahaemolyticus, in the activities of alkaline phosphatase and lysozyme in the hepatopancreas, and in the expression of antioxidant- and immune-related genes, including SOD, GPx, and GST. Meanwhile, the T7 group showed a significant enhancement in superoxide dismutase and catalase activities and CAT expression, while the T9 group experienced a remarkable elevation in reduced glutathione content. Only catalase activity was markedly elevated in the T5 group. The expression of SOD, CAT, GPx, and GST was significantly elevated in three treatment groups following the V. parahaemolyticus challenge. The T7 group exhibited a significant increase in intestinal microbiota richness. Significant increases were noted in Firmicutes abundance across all three treatment groups and in Actinobacteriota in the T5 and T7 groups. Additionally, the opportunistic pathogen Escherichia-Shigella abundance significantly decreased in three treatment groups. Furthermore, administration of 1 × 107 CFU/L L. plantarum enhanced the stability of the intestinal microecosystem, whereas a dose of 1 × 109 CFU/L might have a negative effect. The application of three doses of L. plantarum significantly enhanced intestinal microbiota functions related to the immune response and oxidative stress regulation, while a higher dose (1 × 109 CFU/L) might inhibit several functions. In conclusion, the application of L. plantarum in the rearing water exerted beneficial effects on the antioxidant capacity, non-specific immunity, resistance to V. parahaemolyticus, and the intestinal microbiota stability and functions of R. philippinarum. The beneficial effects of L. plantarum on R. philippinarum were dose-dependent, and the final dose of 1 × 107 CFU/L exhibited the optimal effects.
•Lactobacillus plantarum enhanced non-specific immunity of Ruditapes philippinarum.•L. plantarum improved the intestinal microbiota of R. philippinarum.•The probiotic effects of L. plantarum on R. philippinarum were dose-dependent.•The 1 × 107 CFU/L L. plantarum showed the best probiotic effects on R. philippinarum.</description><identifier>ISSN: 1050-4648</identifier><identifier>ISSN: 1095-9947</identifier><identifier>EISSN: 1095-9947</identifier><identifier>DOI: 10.1016/j.fsi.2024.109971</identifier><identifier>PMID: 39423904</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animal Feed - analysis ; Animals ; Antioxidant capacity ; Antioxidants - metabolism ; Bivalvia - immunology ; Bivalvia - microbiology ; Diet - veterinary ; Gastrointestinal Microbiome - drug effects ; Immunity, Innate ; Intestinal microbiota ; Lactobacillus plantarum - chemistry ; Non-specific immunity ; Probiotics ; Probiotics - administration & dosage ; Probiotics - pharmacology ; Random Allocation ; Ruditapes philippinarum ; Vibrio parahaemolyticus - physiology</subject><ispartof>Fish & shellfish immunology, 2024-11, Vol.154, p.109971, Article 109971</ispartof><rights>2024</rights><rights>Copyright © 2024. Published by Elsevier Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c235t-49e88cf2f7fc5084a170082432b8269cbdf8c74a3a8e3284517c89b714558f4d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.fsi.2024.109971$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39423904$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Longzhen</creatorcontrib><creatorcontrib>Zhuang, Haonan</creatorcontrib><creatorcontrib>Tian, Xiangli</creatorcontrib><creatorcontrib>Zhou, Yujia</creatorcontrib><creatorcontrib>Wang, Fangyi</creatorcontrib><creatorcontrib>Liu, Zirong</creatorcontrib><creatorcontrib>Li, Jiamin</creatorcontrib><creatorcontrib>Jiao, Minghui</creatorcontrib><creatorcontrib>Xue, Suyan</creatorcontrib><creatorcontrib>Li, Jiaqi</creatorcontrib><creatorcontrib>Jiang, Weiwei</creatorcontrib><creatorcontrib>Mao, Yuze</creatorcontrib><title>Understanding the probiotic potential of Lactobacillus plantarum: Antioxidant capacity, non-specific immunity and intestinal microbiota improvement effects on Manila clam Ruditapes philippinarum</title><title>Fish & shellfish immunology</title><addtitle>Fish Shellfish Immunol</addtitle><description>Lactic acid bacteria (LAB) have beneficial effects on aquatic animals, improving their immune system and intestinal microbiota. Nevertheless, the probiotic effects of LAB on the Manila clam Ruditapes philippinarum remain poorly understood. Herein, the effects of administering Lactobacillus plantarum at final doses of 1 × 105 CFU/L (T5 group), 1 × 107 CFU/L (T7 group), and 1 × 109 CFU/L (T9 group) in the rearing water for eight weeks were evaluated for the antioxidant capacity, non-specific immunity, resistance to Vibrio parahaemolyticus infection, and intestinal microbiota of R. philippinarum. The rearing water without the addition of L. plantarum served as a control. The results showed that the T7 and T9 groups demonstrated a significant elevation in the disease resistance of clams against V. parahaemolyticus, in the activities of alkaline phosphatase and lysozyme in the hepatopancreas, and in the expression of antioxidant- and immune-related genes, including SOD, GPx, and GST. Meanwhile, the T7 group showed a significant enhancement in superoxide dismutase and catalase activities and CAT expression, while the T9 group experienced a remarkable elevation in reduced glutathione content. Only catalase activity was markedly elevated in the T5 group. The expression of SOD, CAT, GPx, and GST was significantly elevated in three treatment groups following the V. parahaemolyticus challenge. The T7 group exhibited a significant increase in intestinal microbiota richness. Significant increases were noted in Firmicutes abundance across all three treatment groups and in Actinobacteriota in the T5 and T7 groups. Additionally, the opportunistic pathogen Escherichia-Shigella abundance significantly decreased in three treatment groups. Furthermore, administration of 1 × 107 CFU/L L. plantarum enhanced the stability of the intestinal microecosystem, whereas a dose of 1 × 109 CFU/L might have a negative effect. The application of three doses of L. plantarum significantly enhanced intestinal microbiota functions related to the immune response and oxidative stress regulation, while a higher dose (1 × 109 CFU/L) might inhibit several functions. In conclusion, the application of L. plantarum in the rearing water exerted beneficial effects on the antioxidant capacity, non-specific immunity, resistance to V. parahaemolyticus, and the intestinal microbiota stability and functions of R. philippinarum. The beneficial effects of L. plantarum on R. philippinarum were dose-dependent, and the final dose of 1 × 107 CFU/L exhibited the optimal effects.
•Lactobacillus plantarum enhanced non-specific immunity of Ruditapes philippinarum.•L. plantarum improved the intestinal microbiota of R. philippinarum.•The probiotic effects of L. plantarum on R. philippinarum were dose-dependent.•The 1 × 107 CFU/L L. plantarum showed the best probiotic effects on R. philippinarum.</description><subject>Animal Feed - analysis</subject><subject>Animals</subject><subject>Antioxidant capacity</subject><subject>Antioxidants - metabolism</subject><subject>Bivalvia - immunology</subject><subject>Bivalvia - microbiology</subject><subject>Diet - veterinary</subject><subject>Gastrointestinal Microbiome - drug effects</subject><subject>Immunity, Innate</subject><subject>Intestinal microbiota</subject><subject>Lactobacillus plantarum - chemistry</subject><subject>Non-specific immunity</subject><subject>Probiotics</subject><subject>Probiotics - administration & dosage</subject><subject>Probiotics - pharmacology</subject><subject>Random Allocation</subject><subject>Ruditapes philippinarum</subject><subject>Vibrio parahaemolyticus - physiology</subject><issn>1050-4648</issn><issn>1095-9947</issn><issn>1095-9947</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UU1v1TAQjBCIlsIP4IJ85EAeduwkDpyqio9KD1Wq6NlynDXdp8QOsVO1f49fxj6lcOzJ69XszM5OUbwVfCe4aD4edj7hruKVon_XteJZcUpFXXadap8f65qXqlH6pHiV0oFz3siGvyxOZKcq2XF1Wvy5CQMsKdswYPjF8i2weYk9xoyOzTFDyGhHFj3bW5djbx2O45rYPNqQ7bJOn9g5QeI9DtRgzs6EyA8fWIihTDM49ESE07QGajOSYRgypIyBaCd0m5glCOnewUSCDLwHlxOLgf2wAUfL3Ggndr0OmO0MpH6LI84zcdAGr4sX3o4J3jy-Z8XN1y8_L76X-6tvlxfn-9JVss6l6kBr5yvfeldzraxoOdeVklWvq6Zz_eC1a5WVVoOstKpF63TXt0LVtfZqkGfF-42XFv29kgUzYXIw0iUgrslIIbTkSktNULFByV5KC3gzLzjZ5cEIbo7RmYOh6MwxOrNFRzPvHunXfoLh_8S_rAjweQMAmbxDWExyCMHBgAudywwRn6D_C-AYr1Q</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Liu, Longzhen</creator><creator>Zhuang, Haonan</creator><creator>Tian, Xiangli</creator><creator>Zhou, Yujia</creator><creator>Wang, Fangyi</creator><creator>Liu, Zirong</creator><creator>Li, Jiamin</creator><creator>Jiao, Minghui</creator><creator>Xue, Suyan</creator><creator>Li, Jiaqi</creator><creator>Jiang, Weiwei</creator><creator>Mao, Yuze</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202411</creationdate><title>Understanding the probiotic potential of Lactobacillus plantarum: Antioxidant capacity, non-specific immunity and intestinal microbiota improvement effects on Manila clam Ruditapes philippinarum</title><author>Liu, Longzhen ; Zhuang, Haonan ; Tian, Xiangli ; Zhou, Yujia ; Wang, Fangyi ; Liu, Zirong ; Li, Jiamin ; Jiao, Minghui ; Xue, Suyan ; Li, Jiaqi ; Jiang, Weiwei ; Mao, Yuze</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c235t-49e88cf2f7fc5084a170082432b8269cbdf8c74a3a8e3284517c89b714558f4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animal Feed - analysis</topic><topic>Animals</topic><topic>Antioxidant capacity</topic><topic>Antioxidants - metabolism</topic><topic>Bivalvia - immunology</topic><topic>Bivalvia - microbiology</topic><topic>Diet - veterinary</topic><topic>Gastrointestinal Microbiome - drug effects</topic><topic>Immunity, Innate</topic><topic>Intestinal microbiota</topic><topic>Lactobacillus plantarum - chemistry</topic><topic>Non-specific immunity</topic><topic>Probiotics</topic><topic>Probiotics - administration & dosage</topic><topic>Probiotics - pharmacology</topic><topic>Random Allocation</topic><topic>Ruditapes philippinarum</topic><topic>Vibrio parahaemolyticus - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Longzhen</creatorcontrib><creatorcontrib>Zhuang, Haonan</creatorcontrib><creatorcontrib>Tian, Xiangli</creatorcontrib><creatorcontrib>Zhou, Yujia</creatorcontrib><creatorcontrib>Wang, Fangyi</creatorcontrib><creatorcontrib>Liu, Zirong</creatorcontrib><creatorcontrib>Li, Jiamin</creatorcontrib><creatorcontrib>Jiao, Minghui</creatorcontrib><creatorcontrib>Xue, Suyan</creatorcontrib><creatorcontrib>Li, Jiaqi</creatorcontrib><creatorcontrib>Jiang, Weiwei</creatorcontrib><creatorcontrib>Mao, Yuze</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Fish & shellfish immunology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Longzhen</au><au>Zhuang, Haonan</au><au>Tian, Xiangli</au><au>Zhou, Yujia</au><au>Wang, Fangyi</au><au>Liu, Zirong</au><au>Li, Jiamin</au><au>Jiao, Minghui</au><au>Xue, Suyan</au><au>Li, Jiaqi</au><au>Jiang, Weiwei</au><au>Mao, Yuze</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding the probiotic potential of Lactobacillus plantarum: Antioxidant capacity, non-specific immunity and intestinal microbiota improvement effects on Manila clam Ruditapes philippinarum</atitle><jtitle>Fish & shellfish immunology</jtitle><addtitle>Fish Shellfish Immunol</addtitle><date>2024-11</date><risdate>2024</risdate><volume>154</volume><spage>109971</spage><pages>109971-</pages><artnum>109971</artnum><issn>1050-4648</issn><issn>1095-9947</issn><eissn>1095-9947</eissn><abstract>Lactic acid bacteria (LAB) have beneficial effects on aquatic animals, improving their immune system and intestinal microbiota. Nevertheless, the probiotic effects of LAB on the Manila clam Ruditapes philippinarum remain poorly understood. Herein, the effects of administering Lactobacillus plantarum at final doses of 1 × 105 CFU/L (T5 group), 1 × 107 CFU/L (T7 group), and 1 × 109 CFU/L (T9 group) in the rearing water for eight weeks were evaluated for the antioxidant capacity, non-specific immunity, resistance to Vibrio parahaemolyticus infection, and intestinal microbiota of R. philippinarum. The rearing water without the addition of L. plantarum served as a control. The results showed that the T7 and T9 groups demonstrated a significant elevation in the disease resistance of clams against V. parahaemolyticus, in the activities of alkaline phosphatase and lysozyme in the hepatopancreas, and in the expression of antioxidant- and immune-related genes, including SOD, GPx, and GST. Meanwhile, the T7 group showed a significant enhancement in superoxide dismutase and catalase activities and CAT expression, while the T9 group experienced a remarkable elevation in reduced glutathione content. Only catalase activity was markedly elevated in the T5 group. The expression of SOD, CAT, GPx, and GST was significantly elevated in three treatment groups following the V. parahaemolyticus challenge. The T7 group exhibited a significant increase in intestinal microbiota richness. Significant increases were noted in Firmicutes abundance across all three treatment groups and in Actinobacteriota in the T5 and T7 groups. Additionally, the opportunistic pathogen Escherichia-Shigella abundance significantly decreased in three treatment groups. Furthermore, administration of 1 × 107 CFU/L L. plantarum enhanced the stability of the intestinal microecosystem, whereas a dose of 1 × 109 CFU/L might have a negative effect. The application of three doses of L. plantarum significantly enhanced intestinal microbiota functions related to the immune response and oxidative stress regulation, while a higher dose (1 × 109 CFU/L) might inhibit several functions. In conclusion, the application of L. plantarum in the rearing water exerted beneficial effects on the antioxidant capacity, non-specific immunity, resistance to V. parahaemolyticus, and the intestinal microbiota stability and functions of R. philippinarum. The beneficial effects of L. plantarum on R. philippinarum were dose-dependent, and the final dose of 1 × 107 CFU/L exhibited the optimal effects.
•Lactobacillus plantarum enhanced non-specific immunity of Ruditapes philippinarum.•L. plantarum improved the intestinal microbiota of R. philippinarum.•The probiotic effects of L. plantarum on R. philippinarum were dose-dependent.•The 1 × 107 CFU/L L. plantarum showed the best probiotic effects on R. philippinarum.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>39423904</pmid><doi>10.1016/j.fsi.2024.109971</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1050-4648 |
ispartof | Fish & shellfish immunology, 2024-11, Vol.154, p.109971, Article 109971 |
issn | 1050-4648 1095-9947 1095-9947 |
language | eng |
recordid | cdi_proquest_miscellaneous_3118304838 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Animal Feed - analysis Animals Antioxidant capacity Antioxidants - metabolism Bivalvia - immunology Bivalvia - microbiology Diet - veterinary Gastrointestinal Microbiome - drug effects Immunity, Innate Intestinal microbiota Lactobacillus plantarum - chemistry Non-specific immunity Probiotics Probiotics - administration & dosage Probiotics - pharmacology Random Allocation Ruditapes philippinarum Vibrio parahaemolyticus - physiology |
title | Understanding the probiotic potential of Lactobacillus plantarum: Antioxidant capacity, non-specific immunity and intestinal microbiota improvement effects on Manila clam Ruditapes philippinarum |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A24%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20the%20probiotic%20potential%20of%20Lactobacillus%20plantarum:%20Antioxidant%20capacity,%20non-specific%20immunity%20and%20intestinal%20microbiota%20improvement%20effects%20on%20Manila%20clam%20Ruditapes%20philippinarum&rft.jtitle=Fish%20&%20shellfish%20immunology&rft.au=Liu,%20Longzhen&rft.date=2024-11&rft.volume=154&rft.spage=109971&rft.pages=109971-&rft.artnum=109971&rft.issn=1050-4648&rft.eissn=1095-9947&rft_id=info:doi/10.1016/j.fsi.2024.109971&rft_dat=%3Cproquest_cross%3E3118304838%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3118304838&rft_id=info:pmid/39423904&rft_els_id=S1050464824006168&rfr_iscdi=true |