Dual Frequency-Regulated Magnetic Vortex Nanorobots Empower Nattokinase for Focalized Microvascular Thrombolysis
Magnetic nanorobots are emerging players in thrombolytic therapy due to their noninvasive remote actuation and drug loading capabilities. Although the nanorobots with a size under 100 nm are ideal to apply in microvascular systems, the propulsion performance of nanorobots is inevitably compromised d...
Gespeichert in:
Veröffentlicht in: | ACS nano 2024-10, Vol.18 (43), p.29492-29506 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 29506 |
---|---|
container_issue | 43 |
container_start_page | 29492 |
container_title | ACS nano |
container_volume | 18 |
creator | Gao, Rui Zhang, Wei Chen, Xiaoyong Shen, Junwu Qin, Yifei Wang, Yanyun Wei, Xueyan Zou, Wei Jiang, Xiaoyi Wang, Yingying Huang, Wanxin Chen, Haotian Li, Zhenguang Fan, Haiming He, Bin Cheng, Yu |
description | Magnetic nanorobots are emerging players in thrombolytic therapy due to their noninvasive remote actuation and drug loading capabilities. Although the nanorobots with a size under 100 nm are ideal to apply in microvascular systems, the propulsion performance of nanorobots is inevitably compromised due to the limited response to magnetic fields. Here, we demonstrate a nattokinase-loaded magnetic vortex nanorobot (NK-MNR) with an average size around 70 nm and high saturation magnetization for mechanical propelling and thermal responsive thrombolysis under a magnetic field with dual frequencies. The nanorobots are stable in suspension and undergo the magneto-steered assembly into chain-like NK-MNRs, which are regulated to generate magnetic forces to mechanically damage and penetrate the thrombus by the low-frequency rotating magnetic field. Synergistically, enhanced magnetic hyperthermia is triggered by an alternating magnetic field of high frequency, enabling heat-induced NK release and fibrinolysis. In this dual frequency-regulated magnetothrombolysis (fRMT) strategy, nanorobots collaborate under the dual magnetic energy conversion model to achieve the vasculature recanalization rate of 81.0% in thrombotic mice. Overall, the nanorobot with the special magnetic vortex property and multimodel controls is a promising nanoplatform for in vivo focalized microvascular thrombolysis. |
doi_str_mv | 10.1021/acsnano.4c04331 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3117998726</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3117998726</sourcerecordid><originalsourceid>FETCH-LOGICAL-a217t-636579109d24cf48996de051808295953a5206e0b7e5fa31cf1a79b4f5b8f5023</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxS0EoqUws6GMSCitP2InHlFpAamAhApiixzHKSlJHGwHKH89rhrYmO50-r13dw-AUwTHCGI0EdI2otHjSMKIELQHhogTFsKEvez_9RQNwJG1awhpnMTsEAwIjzBmUTQE7VUnqmBu1HunGrkJH9Wqq4RTeXAnVo1ypQyetXHqK7j3e4zOtLPBrG71pzJ-5Jx-KxthVVBoE8y1FFX5vRWX0ugPYaU3M8Hy1eg609XGlvYYHBSisuqkryPwNJ8tpzfh4uH6dnq5CAVGsQsZYTTmCPIcR7KIEs5ZriBFCUwwp5wSQTFkCmaxooUgSBZIxDyLCpolBYWYjMD5zrc12v9mXVqXVqqqEo3SnU0JQjHnSYyZRyc71N9srVFF2pqyFmaTIphuY077mNM-Zq846827rFb5H_-bqwcudoBXpmvdmcb_-q_dDzBuigg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3117998726</pqid></control><display><type>article</type><title>Dual Frequency-Regulated Magnetic Vortex Nanorobots Empower Nattokinase for Focalized Microvascular Thrombolysis</title><source>ACS Publications</source><creator>Gao, Rui ; Zhang, Wei ; Chen, Xiaoyong ; Shen, Junwu ; Qin, Yifei ; Wang, Yanyun ; Wei, Xueyan ; Zou, Wei ; Jiang, Xiaoyi ; Wang, Yingying ; Huang, Wanxin ; Chen, Haotian ; Li, Zhenguang ; Fan, Haiming ; He, Bin ; Cheng, Yu</creator><creatorcontrib>Gao, Rui ; Zhang, Wei ; Chen, Xiaoyong ; Shen, Junwu ; Qin, Yifei ; Wang, Yanyun ; Wei, Xueyan ; Zou, Wei ; Jiang, Xiaoyi ; Wang, Yingying ; Huang, Wanxin ; Chen, Haotian ; Li, Zhenguang ; Fan, Haiming ; He, Bin ; Cheng, Yu</creatorcontrib><description>Magnetic nanorobots are emerging players in thrombolytic therapy due to their noninvasive remote actuation and drug loading capabilities. Although the nanorobots with a size under 100 nm are ideal to apply in microvascular systems, the propulsion performance of nanorobots is inevitably compromised due to the limited response to magnetic fields. Here, we demonstrate a nattokinase-loaded magnetic vortex nanorobot (NK-MNR) with an average size around 70 nm and high saturation magnetization for mechanical propelling and thermal responsive thrombolysis under a magnetic field with dual frequencies. The nanorobots are stable in suspension and undergo the magneto-steered assembly into chain-like NK-MNRs, which are regulated to generate magnetic forces to mechanically damage and penetrate the thrombus by the low-frequency rotating magnetic field. Synergistically, enhanced magnetic hyperthermia is triggered by an alternating magnetic field of high frequency, enabling heat-induced NK release and fibrinolysis. In this dual frequency-regulated magnetothrombolysis (fRMT) strategy, nanorobots collaborate under the dual magnetic energy conversion model to achieve the vasculature recanalization rate of 81.0% in thrombotic mice. Overall, the nanorobot with the special magnetic vortex property and multimodel controls is a promising nanoplatform for in vivo focalized microvascular thrombolysis.</description><identifier>ISSN: 1936-0851</identifier><identifier>ISSN: 1936-086X</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.4c04331</identifier><identifier>PMID: 39422644</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2024-10, Vol.18 (43), p.29492-29506</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a217t-636579109d24cf48996de051808295953a5206e0b7e5fa31cf1a79b4f5b8f5023</cites><orcidid>0000-0002-0091-772X ; 0009-0005-4054-4736 ; 0000-0002-9030-2023 ; 0009-0003-3520-4978</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.4c04331$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.4c04331$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39422644$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gao, Rui</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Chen, Xiaoyong</creatorcontrib><creatorcontrib>Shen, Junwu</creatorcontrib><creatorcontrib>Qin, Yifei</creatorcontrib><creatorcontrib>Wang, Yanyun</creatorcontrib><creatorcontrib>Wei, Xueyan</creatorcontrib><creatorcontrib>Zou, Wei</creatorcontrib><creatorcontrib>Jiang, Xiaoyi</creatorcontrib><creatorcontrib>Wang, Yingying</creatorcontrib><creatorcontrib>Huang, Wanxin</creatorcontrib><creatorcontrib>Chen, Haotian</creatorcontrib><creatorcontrib>Li, Zhenguang</creatorcontrib><creatorcontrib>Fan, Haiming</creatorcontrib><creatorcontrib>He, Bin</creatorcontrib><creatorcontrib>Cheng, Yu</creatorcontrib><title>Dual Frequency-Regulated Magnetic Vortex Nanorobots Empower Nattokinase for Focalized Microvascular Thrombolysis</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Magnetic nanorobots are emerging players in thrombolytic therapy due to their noninvasive remote actuation and drug loading capabilities. Although the nanorobots with a size under 100 nm are ideal to apply in microvascular systems, the propulsion performance of nanorobots is inevitably compromised due to the limited response to magnetic fields. Here, we demonstrate a nattokinase-loaded magnetic vortex nanorobot (NK-MNR) with an average size around 70 nm and high saturation magnetization for mechanical propelling and thermal responsive thrombolysis under a magnetic field with dual frequencies. The nanorobots are stable in suspension and undergo the magneto-steered assembly into chain-like NK-MNRs, which are regulated to generate magnetic forces to mechanically damage and penetrate the thrombus by the low-frequency rotating magnetic field. Synergistically, enhanced magnetic hyperthermia is triggered by an alternating magnetic field of high frequency, enabling heat-induced NK release and fibrinolysis. In this dual frequency-regulated magnetothrombolysis (fRMT) strategy, nanorobots collaborate under the dual magnetic energy conversion model to achieve the vasculature recanalization rate of 81.0% in thrombotic mice. Overall, the nanorobot with the special magnetic vortex property and multimodel controls is a promising nanoplatform for in vivo focalized microvascular thrombolysis.</description><issn>1936-0851</issn><issn>1936-086X</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kL1PwzAQxS0EoqUws6GMSCitP2InHlFpAamAhApiixzHKSlJHGwHKH89rhrYmO50-r13dw-AUwTHCGI0EdI2otHjSMKIELQHhogTFsKEvez_9RQNwJG1awhpnMTsEAwIjzBmUTQE7VUnqmBu1HunGrkJH9Wqq4RTeXAnVo1ypQyetXHqK7j3e4zOtLPBrG71pzJ-5Jx-KxthVVBoE8y1FFX5vRWX0ugPYaU3M8Hy1eg609XGlvYYHBSisuqkryPwNJ8tpzfh4uH6dnq5CAVGsQsZYTTmCPIcR7KIEs5ZriBFCUwwp5wSQTFkCmaxooUgSBZIxDyLCpolBYWYjMD5zrc12v9mXVqXVqqqEo3SnU0JQjHnSYyZRyc71N9srVFF2pqyFmaTIphuY077mNM-Zq846827rFb5H_-bqwcudoBXpmvdmcb_-q_dDzBuigg</recordid><startdate>20241029</startdate><enddate>20241029</enddate><creator>Gao, Rui</creator><creator>Zhang, Wei</creator><creator>Chen, Xiaoyong</creator><creator>Shen, Junwu</creator><creator>Qin, Yifei</creator><creator>Wang, Yanyun</creator><creator>Wei, Xueyan</creator><creator>Zou, Wei</creator><creator>Jiang, Xiaoyi</creator><creator>Wang, Yingying</creator><creator>Huang, Wanxin</creator><creator>Chen, Haotian</creator><creator>Li, Zhenguang</creator><creator>Fan, Haiming</creator><creator>He, Bin</creator><creator>Cheng, Yu</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0091-772X</orcidid><orcidid>https://orcid.org/0009-0005-4054-4736</orcidid><orcidid>https://orcid.org/0000-0002-9030-2023</orcidid><orcidid>https://orcid.org/0009-0003-3520-4978</orcidid></search><sort><creationdate>20241029</creationdate><title>Dual Frequency-Regulated Magnetic Vortex Nanorobots Empower Nattokinase for Focalized Microvascular Thrombolysis</title><author>Gao, Rui ; Zhang, Wei ; Chen, Xiaoyong ; Shen, Junwu ; Qin, Yifei ; Wang, Yanyun ; Wei, Xueyan ; Zou, Wei ; Jiang, Xiaoyi ; Wang, Yingying ; Huang, Wanxin ; Chen, Haotian ; Li, Zhenguang ; Fan, Haiming ; He, Bin ; Cheng, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a217t-636579109d24cf48996de051808295953a5206e0b7e5fa31cf1a79b4f5b8f5023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Rui</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Chen, Xiaoyong</creatorcontrib><creatorcontrib>Shen, Junwu</creatorcontrib><creatorcontrib>Qin, Yifei</creatorcontrib><creatorcontrib>Wang, Yanyun</creatorcontrib><creatorcontrib>Wei, Xueyan</creatorcontrib><creatorcontrib>Zou, Wei</creatorcontrib><creatorcontrib>Jiang, Xiaoyi</creatorcontrib><creatorcontrib>Wang, Yingying</creatorcontrib><creatorcontrib>Huang, Wanxin</creatorcontrib><creatorcontrib>Chen, Haotian</creatorcontrib><creatorcontrib>Li, Zhenguang</creatorcontrib><creatorcontrib>Fan, Haiming</creatorcontrib><creatorcontrib>He, Bin</creatorcontrib><creatorcontrib>Cheng, Yu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Rui</au><au>Zhang, Wei</au><au>Chen, Xiaoyong</au><au>Shen, Junwu</au><au>Qin, Yifei</au><au>Wang, Yanyun</au><au>Wei, Xueyan</au><au>Zou, Wei</au><au>Jiang, Xiaoyi</au><au>Wang, Yingying</au><au>Huang, Wanxin</au><au>Chen, Haotian</au><au>Li, Zhenguang</au><au>Fan, Haiming</au><au>He, Bin</au><au>Cheng, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual Frequency-Regulated Magnetic Vortex Nanorobots Empower Nattokinase for Focalized Microvascular Thrombolysis</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2024-10-29</date><risdate>2024</risdate><volume>18</volume><issue>43</issue><spage>29492</spage><epage>29506</epage><pages>29492-29506</pages><issn>1936-0851</issn><issn>1936-086X</issn><eissn>1936-086X</eissn><abstract>Magnetic nanorobots are emerging players in thrombolytic therapy due to their noninvasive remote actuation and drug loading capabilities. Although the nanorobots with a size under 100 nm are ideal to apply in microvascular systems, the propulsion performance of nanorobots is inevitably compromised due to the limited response to magnetic fields. Here, we demonstrate a nattokinase-loaded magnetic vortex nanorobot (NK-MNR) with an average size around 70 nm and high saturation magnetization for mechanical propelling and thermal responsive thrombolysis under a magnetic field with dual frequencies. The nanorobots are stable in suspension and undergo the magneto-steered assembly into chain-like NK-MNRs, which are regulated to generate magnetic forces to mechanically damage and penetrate the thrombus by the low-frequency rotating magnetic field. Synergistically, enhanced magnetic hyperthermia is triggered by an alternating magnetic field of high frequency, enabling heat-induced NK release and fibrinolysis. In this dual frequency-regulated magnetothrombolysis (fRMT) strategy, nanorobots collaborate under the dual magnetic energy conversion model to achieve the vasculature recanalization rate of 81.0% in thrombotic mice. Overall, the nanorobot with the special magnetic vortex property and multimodel controls is a promising nanoplatform for in vivo focalized microvascular thrombolysis.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39422644</pmid><doi>10.1021/acsnano.4c04331</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-0091-772X</orcidid><orcidid>https://orcid.org/0009-0005-4054-4736</orcidid><orcidid>https://orcid.org/0000-0002-9030-2023</orcidid><orcidid>https://orcid.org/0009-0003-3520-4978</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2024-10, Vol.18 (43), p.29492-29506 |
issn | 1936-0851 1936-086X 1936-086X |
language | eng |
recordid | cdi_proquest_miscellaneous_3117998726 |
source | ACS Publications |
title | Dual Frequency-Regulated Magnetic Vortex Nanorobots Empower Nattokinase for Focalized Microvascular Thrombolysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T10%3A07%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual%20Frequency-Regulated%20Magnetic%20Vortex%20Nanorobots%20Empower%20Nattokinase%20for%20Focalized%20Microvascular%20Thrombolysis&rft.jtitle=ACS%20nano&rft.au=Gao,%20Rui&rft.date=2024-10-29&rft.volume=18&rft.issue=43&rft.spage=29492&rft.epage=29506&rft.pages=29492-29506&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.4c04331&rft_dat=%3Cproquest_cross%3E3117998726%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3117998726&rft_id=info:pmid/39422644&rfr_iscdi=true |