Dual Frequency-Regulated Magnetic Vortex Nanorobots Empower Nattokinase for Focalized Microvascular Thrombolysis

Magnetic nanorobots are emerging players in thrombolytic therapy due to their noninvasive remote actuation and drug loading capabilities. Although the nanorobots with a size under 100 nm are ideal to apply in microvascular systems, the propulsion performance of nanorobots is inevitably compromised d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2024-10, Vol.18 (43), p.29492-29506
Hauptverfasser: Gao, Rui, Zhang, Wei, Chen, Xiaoyong, Shen, Junwu, Qin, Yifei, Wang, Yanyun, Wei, Xueyan, Zou, Wei, Jiang, Xiaoyi, Wang, Yingying, Huang, Wanxin, Chen, Haotian, Li, Zhenguang, Fan, Haiming, He, Bin, Cheng, Yu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 29506
container_issue 43
container_start_page 29492
container_title ACS nano
container_volume 18
creator Gao, Rui
Zhang, Wei
Chen, Xiaoyong
Shen, Junwu
Qin, Yifei
Wang, Yanyun
Wei, Xueyan
Zou, Wei
Jiang, Xiaoyi
Wang, Yingying
Huang, Wanxin
Chen, Haotian
Li, Zhenguang
Fan, Haiming
He, Bin
Cheng, Yu
description Magnetic nanorobots are emerging players in thrombolytic therapy due to their noninvasive remote actuation and drug loading capabilities. Although the nanorobots with a size under 100 nm are ideal to apply in microvascular systems, the propulsion performance of nanorobots is inevitably compromised due to the limited response to magnetic fields. Here, we demonstrate a nattokinase-loaded magnetic vortex nanorobot (NK-MNR) with an average size around 70 nm and high saturation magnetization for mechanical propelling and thermal responsive thrombolysis under a magnetic field with dual frequencies. The nanorobots are stable in suspension and undergo the magneto-steered assembly into chain-like NK-MNRs, which are regulated to generate magnetic forces to mechanically damage and penetrate the thrombus by the low-frequency rotating magnetic field. Synergistically, enhanced magnetic hyperthermia is triggered by an alternating magnetic field of high frequency, enabling heat-induced NK release and fibrinolysis. In this dual frequency-regulated magnetothrombolysis (fRMT) strategy, nanorobots collaborate under the dual magnetic energy conversion model to achieve the vasculature recanalization rate of 81.0% in thrombotic mice. Overall, the nanorobot with the special magnetic vortex property and multimodel controls is a promising nanoplatform for in vivo focalized microvascular thrombolysis.
doi_str_mv 10.1021/acsnano.4c04331
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3117998726</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3117998726</sourcerecordid><originalsourceid>FETCH-LOGICAL-a217t-636579109d24cf48996de051808295953a5206e0b7e5fa31cf1a79b4f5b8f5023</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxS0EoqUws6GMSCitP2InHlFpAamAhApiixzHKSlJHGwHKH89rhrYmO50-r13dw-AUwTHCGI0EdI2otHjSMKIELQHhogTFsKEvez_9RQNwJG1awhpnMTsEAwIjzBmUTQE7VUnqmBu1HunGrkJH9Wqq4RTeXAnVo1ypQyetXHqK7j3e4zOtLPBrG71pzJ-5Jx-KxthVVBoE8y1FFX5vRWX0ugPYaU3M8Hy1eg609XGlvYYHBSisuqkryPwNJ8tpzfh4uH6dnq5CAVGsQsZYTTmCPIcR7KIEs5ZriBFCUwwp5wSQTFkCmaxooUgSBZIxDyLCpolBYWYjMD5zrc12v9mXVqXVqqqEo3SnU0JQjHnSYyZRyc71N9srVFF2pqyFmaTIphuY077mNM-Zq846827rFb5H_-bqwcudoBXpmvdmcb_-q_dDzBuigg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3117998726</pqid></control><display><type>article</type><title>Dual Frequency-Regulated Magnetic Vortex Nanorobots Empower Nattokinase for Focalized Microvascular Thrombolysis</title><source>ACS Publications</source><creator>Gao, Rui ; Zhang, Wei ; Chen, Xiaoyong ; Shen, Junwu ; Qin, Yifei ; Wang, Yanyun ; Wei, Xueyan ; Zou, Wei ; Jiang, Xiaoyi ; Wang, Yingying ; Huang, Wanxin ; Chen, Haotian ; Li, Zhenguang ; Fan, Haiming ; He, Bin ; Cheng, Yu</creator><creatorcontrib>Gao, Rui ; Zhang, Wei ; Chen, Xiaoyong ; Shen, Junwu ; Qin, Yifei ; Wang, Yanyun ; Wei, Xueyan ; Zou, Wei ; Jiang, Xiaoyi ; Wang, Yingying ; Huang, Wanxin ; Chen, Haotian ; Li, Zhenguang ; Fan, Haiming ; He, Bin ; Cheng, Yu</creatorcontrib><description>Magnetic nanorobots are emerging players in thrombolytic therapy due to their noninvasive remote actuation and drug loading capabilities. Although the nanorobots with a size under 100 nm are ideal to apply in microvascular systems, the propulsion performance of nanorobots is inevitably compromised due to the limited response to magnetic fields. Here, we demonstrate a nattokinase-loaded magnetic vortex nanorobot (NK-MNR) with an average size around 70 nm and high saturation magnetization for mechanical propelling and thermal responsive thrombolysis under a magnetic field with dual frequencies. The nanorobots are stable in suspension and undergo the magneto-steered assembly into chain-like NK-MNRs, which are regulated to generate magnetic forces to mechanically damage and penetrate the thrombus by the low-frequency rotating magnetic field. Synergistically, enhanced magnetic hyperthermia is triggered by an alternating magnetic field of high frequency, enabling heat-induced NK release and fibrinolysis. In this dual frequency-regulated magnetothrombolysis (fRMT) strategy, nanorobots collaborate under the dual magnetic energy conversion model to achieve the vasculature recanalization rate of 81.0% in thrombotic mice. Overall, the nanorobot with the special magnetic vortex property and multimodel controls is a promising nanoplatform for in vivo focalized microvascular thrombolysis.</description><identifier>ISSN: 1936-0851</identifier><identifier>ISSN: 1936-086X</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.4c04331</identifier><identifier>PMID: 39422644</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2024-10, Vol.18 (43), p.29492-29506</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a217t-636579109d24cf48996de051808295953a5206e0b7e5fa31cf1a79b4f5b8f5023</cites><orcidid>0000-0002-0091-772X ; 0009-0005-4054-4736 ; 0000-0002-9030-2023 ; 0009-0003-3520-4978</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.4c04331$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.4c04331$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39422644$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gao, Rui</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Chen, Xiaoyong</creatorcontrib><creatorcontrib>Shen, Junwu</creatorcontrib><creatorcontrib>Qin, Yifei</creatorcontrib><creatorcontrib>Wang, Yanyun</creatorcontrib><creatorcontrib>Wei, Xueyan</creatorcontrib><creatorcontrib>Zou, Wei</creatorcontrib><creatorcontrib>Jiang, Xiaoyi</creatorcontrib><creatorcontrib>Wang, Yingying</creatorcontrib><creatorcontrib>Huang, Wanxin</creatorcontrib><creatorcontrib>Chen, Haotian</creatorcontrib><creatorcontrib>Li, Zhenguang</creatorcontrib><creatorcontrib>Fan, Haiming</creatorcontrib><creatorcontrib>He, Bin</creatorcontrib><creatorcontrib>Cheng, Yu</creatorcontrib><title>Dual Frequency-Regulated Magnetic Vortex Nanorobots Empower Nattokinase for Focalized Microvascular Thrombolysis</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Magnetic nanorobots are emerging players in thrombolytic therapy due to their noninvasive remote actuation and drug loading capabilities. Although the nanorobots with a size under 100 nm are ideal to apply in microvascular systems, the propulsion performance of nanorobots is inevitably compromised due to the limited response to magnetic fields. Here, we demonstrate a nattokinase-loaded magnetic vortex nanorobot (NK-MNR) with an average size around 70 nm and high saturation magnetization for mechanical propelling and thermal responsive thrombolysis under a magnetic field with dual frequencies. The nanorobots are stable in suspension and undergo the magneto-steered assembly into chain-like NK-MNRs, which are regulated to generate magnetic forces to mechanically damage and penetrate the thrombus by the low-frequency rotating magnetic field. Synergistically, enhanced magnetic hyperthermia is triggered by an alternating magnetic field of high frequency, enabling heat-induced NK release and fibrinolysis. In this dual frequency-regulated magnetothrombolysis (fRMT) strategy, nanorobots collaborate under the dual magnetic energy conversion model to achieve the vasculature recanalization rate of 81.0% in thrombotic mice. Overall, the nanorobot with the special magnetic vortex property and multimodel controls is a promising nanoplatform for in vivo focalized microvascular thrombolysis.</description><issn>1936-0851</issn><issn>1936-086X</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kL1PwzAQxS0EoqUws6GMSCitP2InHlFpAamAhApiixzHKSlJHGwHKH89rhrYmO50-r13dw-AUwTHCGI0EdI2otHjSMKIELQHhogTFsKEvez_9RQNwJG1awhpnMTsEAwIjzBmUTQE7VUnqmBu1HunGrkJH9Wqq4RTeXAnVo1ypQyetXHqK7j3e4zOtLPBrG71pzJ-5Jx-KxthVVBoE8y1FFX5vRWX0ugPYaU3M8Hy1eg609XGlvYYHBSisuqkryPwNJ8tpzfh4uH6dnq5CAVGsQsZYTTmCPIcR7KIEs5ZriBFCUwwp5wSQTFkCmaxooUgSBZIxDyLCpolBYWYjMD5zrc12v9mXVqXVqqqEo3SnU0JQjHnSYyZRyc71N9srVFF2pqyFmaTIphuY077mNM-Zq846827rFb5H_-bqwcudoBXpmvdmcb_-q_dDzBuigg</recordid><startdate>20241029</startdate><enddate>20241029</enddate><creator>Gao, Rui</creator><creator>Zhang, Wei</creator><creator>Chen, Xiaoyong</creator><creator>Shen, Junwu</creator><creator>Qin, Yifei</creator><creator>Wang, Yanyun</creator><creator>Wei, Xueyan</creator><creator>Zou, Wei</creator><creator>Jiang, Xiaoyi</creator><creator>Wang, Yingying</creator><creator>Huang, Wanxin</creator><creator>Chen, Haotian</creator><creator>Li, Zhenguang</creator><creator>Fan, Haiming</creator><creator>He, Bin</creator><creator>Cheng, Yu</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0091-772X</orcidid><orcidid>https://orcid.org/0009-0005-4054-4736</orcidid><orcidid>https://orcid.org/0000-0002-9030-2023</orcidid><orcidid>https://orcid.org/0009-0003-3520-4978</orcidid></search><sort><creationdate>20241029</creationdate><title>Dual Frequency-Regulated Magnetic Vortex Nanorobots Empower Nattokinase for Focalized Microvascular Thrombolysis</title><author>Gao, Rui ; Zhang, Wei ; Chen, Xiaoyong ; Shen, Junwu ; Qin, Yifei ; Wang, Yanyun ; Wei, Xueyan ; Zou, Wei ; Jiang, Xiaoyi ; Wang, Yingying ; Huang, Wanxin ; Chen, Haotian ; Li, Zhenguang ; Fan, Haiming ; He, Bin ; Cheng, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a217t-636579109d24cf48996de051808295953a5206e0b7e5fa31cf1a79b4f5b8f5023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Rui</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Chen, Xiaoyong</creatorcontrib><creatorcontrib>Shen, Junwu</creatorcontrib><creatorcontrib>Qin, Yifei</creatorcontrib><creatorcontrib>Wang, Yanyun</creatorcontrib><creatorcontrib>Wei, Xueyan</creatorcontrib><creatorcontrib>Zou, Wei</creatorcontrib><creatorcontrib>Jiang, Xiaoyi</creatorcontrib><creatorcontrib>Wang, Yingying</creatorcontrib><creatorcontrib>Huang, Wanxin</creatorcontrib><creatorcontrib>Chen, Haotian</creatorcontrib><creatorcontrib>Li, Zhenguang</creatorcontrib><creatorcontrib>Fan, Haiming</creatorcontrib><creatorcontrib>He, Bin</creatorcontrib><creatorcontrib>Cheng, Yu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Rui</au><au>Zhang, Wei</au><au>Chen, Xiaoyong</au><au>Shen, Junwu</au><au>Qin, Yifei</au><au>Wang, Yanyun</au><au>Wei, Xueyan</au><au>Zou, Wei</au><au>Jiang, Xiaoyi</au><au>Wang, Yingying</au><au>Huang, Wanxin</au><au>Chen, Haotian</au><au>Li, Zhenguang</au><au>Fan, Haiming</au><au>He, Bin</au><au>Cheng, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual Frequency-Regulated Magnetic Vortex Nanorobots Empower Nattokinase for Focalized Microvascular Thrombolysis</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2024-10-29</date><risdate>2024</risdate><volume>18</volume><issue>43</issue><spage>29492</spage><epage>29506</epage><pages>29492-29506</pages><issn>1936-0851</issn><issn>1936-086X</issn><eissn>1936-086X</eissn><abstract>Magnetic nanorobots are emerging players in thrombolytic therapy due to their noninvasive remote actuation and drug loading capabilities. Although the nanorobots with a size under 100 nm are ideal to apply in microvascular systems, the propulsion performance of nanorobots is inevitably compromised due to the limited response to magnetic fields. Here, we demonstrate a nattokinase-loaded magnetic vortex nanorobot (NK-MNR) with an average size around 70 nm and high saturation magnetization for mechanical propelling and thermal responsive thrombolysis under a magnetic field with dual frequencies. The nanorobots are stable in suspension and undergo the magneto-steered assembly into chain-like NK-MNRs, which are regulated to generate magnetic forces to mechanically damage and penetrate the thrombus by the low-frequency rotating magnetic field. Synergistically, enhanced magnetic hyperthermia is triggered by an alternating magnetic field of high frequency, enabling heat-induced NK release and fibrinolysis. In this dual frequency-regulated magnetothrombolysis (fRMT) strategy, nanorobots collaborate under the dual magnetic energy conversion model to achieve the vasculature recanalization rate of 81.0% in thrombotic mice. Overall, the nanorobot with the special magnetic vortex property and multimodel controls is a promising nanoplatform for in vivo focalized microvascular thrombolysis.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39422644</pmid><doi>10.1021/acsnano.4c04331</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-0091-772X</orcidid><orcidid>https://orcid.org/0009-0005-4054-4736</orcidid><orcidid>https://orcid.org/0000-0002-9030-2023</orcidid><orcidid>https://orcid.org/0009-0003-3520-4978</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2024-10, Vol.18 (43), p.29492-29506
issn 1936-0851
1936-086X
1936-086X
language eng
recordid cdi_proquest_miscellaneous_3117998726
source ACS Publications
title Dual Frequency-Regulated Magnetic Vortex Nanorobots Empower Nattokinase for Focalized Microvascular Thrombolysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T10%3A07%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual%20Frequency-Regulated%20Magnetic%20Vortex%20Nanorobots%20Empower%20Nattokinase%20for%20Focalized%20Microvascular%20Thrombolysis&rft.jtitle=ACS%20nano&rft.au=Gao,%20Rui&rft.date=2024-10-29&rft.volume=18&rft.issue=43&rft.spage=29492&rft.epage=29506&rft.pages=29492-29506&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.4c04331&rft_dat=%3Cproquest_cross%3E3117998726%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3117998726&rft_id=info:pmid/39422644&rfr_iscdi=true