Generation and Clearance of Superoxide Radicals at Buried Interfaces of Perovskites with Different Crystal Structures

One of the most notorious issues with classic perovskite (MAPbI3) is its rapid degradation caused by generating superoxide radicals (O2•−) on its surface under light and oxygen environments (light/O2). The differences in O2•− generation rate and tolerance to O2•− among perovskite with different stru...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-10, Vol.20 (50), p.e2404677-n/a
Hauptverfasser: Liao, Ling, Jin, Bo, Guo, Zhicheng, Zhao, Yang, Zheng, Tian, Fan, Lisheng, Wang, Chengrong, Peng, Rufang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 50
container_start_page e2404677
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 20
creator Liao, Ling
Jin, Bo
Guo, Zhicheng
Zhao, Yang
Zheng, Tian
Fan, Lisheng
Wang, Chengrong
Peng, Rufang
description One of the most notorious issues with classic perovskite (MAPbI3) is its rapid degradation caused by generating superoxide radicals (O2•−) on its surface under light and oxygen environments (light/O2). The differences in O2•− generation rate and tolerance to O2•− among perovskite with different structures are pending. For the first time it is validated through solid‐electron paramagnetic resonance (EPR) that MAPbI3 and Cs0.175FA0.75MA0.075PbI3 (PVSK) crystals can generate O2•− in an air atmosphere. The rapid degradation of perovskite buried interfaces caused by O2•− dominates the nonexposed air aging process of SnO2‐based perovskite film, and the degradation rate of MAPbI3 film is faster than that of PVSK film. The fullerene pyridine derivatives (C60OPD), which function as a buffer layer between SnO2 and PVSK to scavenge O2•− and prevent degradation at the buried interface of the PVSK film, reduce the density of defect states, and accelerate the transmission of photogenerated electrons. The photoelectric conversion efficiency (PCE) of perovskite solar cells (PSCs) optimizes with C60OPD increased from 21.15% to 23.11% while significantly improving the stability in light/O2. This work reveals the hidden degradation of perovskite‐buried interfaces caused by O2•− and explores efficient ways for perovskite to resist O2•−. Perovskite crystals can generate superoxide radicals (O2•−) in an air atmosphere, leading to hidden degradation at the buried interface. As an O2•– scavenger, the fullerene pyridine derivatives (C60OPD) eliminate this degradation and improve device efficiency.
doi_str_mv 10.1002/smll.202404677
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3117997237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3117997237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2587-7c1e00a8894590acea79d161d40eb8b24aa2cfc6d94e01057c60187f203404993</originalsourceid><addsrcrecordid>eNqFkctPGzEQhy1UVELolWNlqZdeEsaPrNfHNuUlBYFIe1453lnV6WY39YOQ_x5HgSD10pPH0udvxvMj5JzBmAHwi7Bq2zEHLkEWSh2RASuYGBUl1x8ONYMTchrCEkAwLtVHciK05FwUMCDpGjv0Jrq-o6ar6bRF401nkfYNnac1-v7Z1UgfTe2saQM1kX5P3mFNb7uIvjEWw459yORT-ONivm5c_E1_uKZBj12kU78N0bR0Hn2yMXkMZ-S4yTL89HoOya-ry5_Tm9Hs_vp2-m02snxSqpGyDAFMWWo50ZA7GaXr_KlaAi7KBZfGcNvYotYSgcFE2QJYqRoOIu9DazEkX_fete__JgyxWrlgsW1Nh30KlWBMaa24UBn98g-67JPv8nSZkiKvmMkyU-M9ZX0fgsemWnu3Mn5bMah2gVS7QKpDIPnB51dtWqywPuBvCWRA74GNa3H7H101v5vN3uUvQqWX1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3143202148</pqid></control><display><type>article</type><title>Generation and Clearance of Superoxide Radicals at Buried Interfaces of Perovskites with Different Crystal Structures</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Liao, Ling ; Jin, Bo ; Guo, Zhicheng ; Zhao, Yang ; Zheng, Tian ; Fan, Lisheng ; Wang, Chengrong ; Peng, Rufang</creator><creatorcontrib>Liao, Ling ; Jin, Bo ; Guo, Zhicheng ; Zhao, Yang ; Zheng, Tian ; Fan, Lisheng ; Wang, Chengrong ; Peng, Rufang</creatorcontrib><description>One of the most notorious issues with classic perovskite (MAPbI3) is its rapid degradation caused by generating superoxide radicals (O2•−) on its surface under light and oxygen environments (light/O2). The differences in O2•− generation rate and tolerance to O2•− among perovskite with different structures are pending. For the first time it is validated through solid‐electron paramagnetic resonance (EPR) that MAPbI3 and Cs0.175FA0.75MA0.075PbI3 (PVSK) crystals can generate O2•− in an air atmosphere. The rapid degradation of perovskite buried interfaces caused by O2•− dominates the nonexposed air aging process of SnO2‐based perovskite film, and the degradation rate of MAPbI3 film is faster than that of PVSK film. The fullerene pyridine derivatives (C60OPD), which function as a buffer layer between SnO2 and PVSK to scavenge O2•− and prevent degradation at the buried interface of the PVSK film, reduce the density of defect states, and accelerate the transmission of photogenerated electrons. The photoelectric conversion efficiency (PCE) of perovskite solar cells (PSCs) optimizes with C60OPD increased from 21.15% to 23.11% while significantly improving the stability in light/O2. This work reveals the hidden degradation of perovskite‐buried interfaces caused by O2•− and explores efficient ways for perovskite to resist O2•−. Perovskite crystals can generate superoxide radicals (O2•−) in an air atmosphere, leading to hidden degradation at the buried interface. As an O2•– scavenger, the fullerene pyridine derivatives (C60OPD) eliminate this degradation and improve device efficiency.</description><identifier>ISSN: 1613-6810</identifier><identifier>ISSN: 1613-6829</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202404677</identifier><identifier>PMID: 39422360</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Buffer layers ; buried interface ; Buried structures ; Crystal defects ; Electron paramagnetic resonance ; Electrons ; Energy conversion efficiency ; fullerene pyridine derivatives ; Interface stability ; perovskite ; Perovskites ; Photodegradation ; Photoelectricity ; Photovoltaic cells ; Solar cells ; stability ; superoxide radicals ; Tin dioxide</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-10, Vol.20 (50), p.e2404677-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2587-7c1e00a8894590acea79d161d40eb8b24aa2cfc6d94e01057c60187f203404993</cites><orcidid>0000-0002-6966-2876</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202404677$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202404677$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39422360$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liao, Ling</creatorcontrib><creatorcontrib>Jin, Bo</creatorcontrib><creatorcontrib>Guo, Zhicheng</creatorcontrib><creatorcontrib>Zhao, Yang</creatorcontrib><creatorcontrib>Zheng, Tian</creatorcontrib><creatorcontrib>Fan, Lisheng</creatorcontrib><creatorcontrib>Wang, Chengrong</creatorcontrib><creatorcontrib>Peng, Rufang</creatorcontrib><title>Generation and Clearance of Superoxide Radicals at Buried Interfaces of Perovskites with Different Crystal Structures</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>One of the most notorious issues with classic perovskite (MAPbI3) is its rapid degradation caused by generating superoxide radicals (O2•−) on its surface under light and oxygen environments (light/O2). The differences in O2•− generation rate and tolerance to O2•− among perovskite with different structures are pending. For the first time it is validated through solid‐electron paramagnetic resonance (EPR) that MAPbI3 and Cs0.175FA0.75MA0.075PbI3 (PVSK) crystals can generate O2•− in an air atmosphere. The rapid degradation of perovskite buried interfaces caused by O2•− dominates the nonexposed air aging process of SnO2‐based perovskite film, and the degradation rate of MAPbI3 film is faster than that of PVSK film. The fullerene pyridine derivatives (C60OPD), which function as a buffer layer between SnO2 and PVSK to scavenge O2•− and prevent degradation at the buried interface of the PVSK film, reduce the density of defect states, and accelerate the transmission of photogenerated electrons. The photoelectric conversion efficiency (PCE) of perovskite solar cells (PSCs) optimizes with C60OPD increased from 21.15% to 23.11% while significantly improving the stability in light/O2. This work reveals the hidden degradation of perovskite‐buried interfaces caused by O2•− and explores efficient ways for perovskite to resist O2•−. Perovskite crystals can generate superoxide radicals (O2•−) in an air atmosphere, leading to hidden degradation at the buried interface. As an O2•– scavenger, the fullerene pyridine derivatives (C60OPD) eliminate this degradation and improve device efficiency.</description><subject>Buffer layers</subject><subject>buried interface</subject><subject>Buried structures</subject><subject>Crystal defects</subject><subject>Electron paramagnetic resonance</subject><subject>Electrons</subject><subject>Energy conversion efficiency</subject><subject>fullerene pyridine derivatives</subject><subject>Interface stability</subject><subject>perovskite</subject><subject>Perovskites</subject><subject>Photodegradation</subject><subject>Photoelectricity</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>stability</subject><subject>superoxide radicals</subject><subject>Tin dioxide</subject><issn>1613-6810</issn><issn>1613-6829</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkctPGzEQhy1UVELolWNlqZdeEsaPrNfHNuUlBYFIe1453lnV6WY39YOQ_x5HgSD10pPH0udvxvMj5JzBmAHwi7Bq2zEHLkEWSh2RASuYGBUl1x8ONYMTchrCEkAwLtVHciK05FwUMCDpGjv0Jrq-o6ar6bRF401nkfYNnac1-v7Z1UgfTe2saQM1kX5P3mFNb7uIvjEWw459yORT-ONivm5c_E1_uKZBj12kU78N0bR0Hn2yMXkMZ-S4yTL89HoOya-ry5_Tm9Hs_vp2-m02snxSqpGyDAFMWWo50ZA7GaXr_KlaAi7KBZfGcNvYotYSgcFE2QJYqRoOIu9DazEkX_fete__JgyxWrlgsW1Nh30KlWBMaa24UBn98g-67JPv8nSZkiKvmMkyU-M9ZX0fgsemWnu3Mn5bMah2gVS7QKpDIPnB51dtWqywPuBvCWRA74GNa3H7H101v5vN3uUvQqWX1g</recordid><startdate>20241018</startdate><enddate>20241018</enddate><creator>Liao, Ling</creator><creator>Jin, Bo</creator><creator>Guo, Zhicheng</creator><creator>Zhao, Yang</creator><creator>Zheng, Tian</creator><creator>Fan, Lisheng</creator><creator>Wang, Chengrong</creator><creator>Peng, Rufang</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6966-2876</orcidid></search><sort><creationdate>20241018</creationdate><title>Generation and Clearance of Superoxide Radicals at Buried Interfaces of Perovskites with Different Crystal Structures</title><author>Liao, Ling ; Jin, Bo ; Guo, Zhicheng ; Zhao, Yang ; Zheng, Tian ; Fan, Lisheng ; Wang, Chengrong ; Peng, Rufang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2587-7c1e00a8894590acea79d161d40eb8b24aa2cfc6d94e01057c60187f203404993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Buffer layers</topic><topic>buried interface</topic><topic>Buried structures</topic><topic>Crystal defects</topic><topic>Electron paramagnetic resonance</topic><topic>Electrons</topic><topic>Energy conversion efficiency</topic><topic>fullerene pyridine derivatives</topic><topic>Interface stability</topic><topic>perovskite</topic><topic>Perovskites</topic><topic>Photodegradation</topic><topic>Photoelectricity</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>stability</topic><topic>superoxide radicals</topic><topic>Tin dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liao, Ling</creatorcontrib><creatorcontrib>Jin, Bo</creatorcontrib><creatorcontrib>Guo, Zhicheng</creatorcontrib><creatorcontrib>Zhao, Yang</creatorcontrib><creatorcontrib>Zheng, Tian</creatorcontrib><creatorcontrib>Fan, Lisheng</creatorcontrib><creatorcontrib>Wang, Chengrong</creatorcontrib><creatorcontrib>Peng, Rufang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liao, Ling</au><au>Jin, Bo</au><au>Guo, Zhicheng</au><au>Zhao, Yang</au><au>Zheng, Tian</au><au>Fan, Lisheng</au><au>Wang, Chengrong</au><au>Peng, Rufang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generation and Clearance of Superoxide Radicals at Buried Interfaces of Perovskites with Different Crystal Structures</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2024-10-18</date><risdate>2024</risdate><volume>20</volume><issue>50</issue><spage>e2404677</spage><epage>n/a</epage><pages>e2404677-n/a</pages><issn>1613-6810</issn><issn>1613-6829</issn><eissn>1613-6829</eissn><abstract>One of the most notorious issues with classic perovskite (MAPbI3) is its rapid degradation caused by generating superoxide radicals (O2•−) on its surface under light and oxygen environments (light/O2). The differences in O2•− generation rate and tolerance to O2•− among perovskite with different structures are pending. For the first time it is validated through solid‐electron paramagnetic resonance (EPR) that MAPbI3 and Cs0.175FA0.75MA0.075PbI3 (PVSK) crystals can generate O2•− in an air atmosphere. The rapid degradation of perovskite buried interfaces caused by O2•− dominates the nonexposed air aging process of SnO2‐based perovskite film, and the degradation rate of MAPbI3 film is faster than that of PVSK film. The fullerene pyridine derivatives (C60OPD), which function as a buffer layer between SnO2 and PVSK to scavenge O2•− and prevent degradation at the buried interface of the PVSK film, reduce the density of defect states, and accelerate the transmission of photogenerated electrons. The photoelectric conversion efficiency (PCE) of perovskite solar cells (PSCs) optimizes with C60OPD increased from 21.15% to 23.11% while significantly improving the stability in light/O2. This work reveals the hidden degradation of perovskite‐buried interfaces caused by O2•− and explores efficient ways for perovskite to resist O2•−. Perovskite crystals can generate superoxide radicals (O2•−) in an air atmosphere, leading to hidden degradation at the buried interface. As an O2•– scavenger, the fullerene pyridine derivatives (C60OPD) eliminate this degradation and improve device efficiency.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39422360</pmid><doi>10.1002/smll.202404677</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6966-2876</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2024-10, Vol.20 (50), p.e2404677-n/a
issn 1613-6810
1613-6829
1613-6829
language eng
recordid cdi_proquest_miscellaneous_3117997237
source Wiley Online Library - AutoHoldings Journals
subjects Buffer layers
buried interface
Buried structures
Crystal defects
Electron paramagnetic resonance
Electrons
Energy conversion efficiency
fullerene pyridine derivatives
Interface stability
perovskite
Perovskites
Photodegradation
Photoelectricity
Photovoltaic cells
Solar cells
stability
superoxide radicals
Tin dioxide
title Generation and Clearance of Superoxide Radicals at Buried Interfaces of Perovskites with Different Crystal Structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T06%3A45%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generation%20and%20Clearance%20of%20Superoxide%20Radicals%20at%20Buried%20Interfaces%20of%20Perovskites%20with%20Different%20Crystal%20Structures&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Liao,%20Ling&rft.date=2024-10-18&rft.volume=20&rft.issue=50&rft.spage=e2404677&rft.epage=n/a&rft.pages=e2404677-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202404677&rft_dat=%3Cproquest_cross%3E3117997237%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3143202148&rft_id=info:pmid/39422360&rfr_iscdi=true