Generation and Clearance of Superoxide Radicals at Buried Interfaces of Perovskites with Different Crystal Structures
One of the most notorious issues with classic perovskite (MAPbI3) is its rapid degradation caused by generating superoxide radicals (O2•−) on its surface under light and oxygen environments (light/O2). The differences in O2•− generation rate and tolerance to O2•− among perovskite with different stru...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-10, Vol.20 (50), p.e2404677-n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 50 |
container_start_page | e2404677 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 20 |
creator | Liao, Ling Jin, Bo Guo, Zhicheng Zhao, Yang Zheng, Tian Fan, Lisheng Wang, Chengrong Peng, Rufang |
description | One of the most notorious issues with classic perovskite (MAPbI3) is its rapid degradation caused by generating superoxide radicals (O2•−) on its surface under light and oxygen environments (light/O2). The differences in O2•− generation rate and tolerance to O2•− among perovskite with different structures are pending. For the first time it is validated through solid‐electron paramagnetic resonance (EPR) that MAPbI3 and Cs0.175FA0.75MA0.075PbI3 (PVSK) crystals can generate O2•− in an air atmosphere. The rapid degradation of perovskite buried interfaces caused by O2•− dominates the nonexposed air aging process of SnO2‐based perovskite film, and the degradation rate of MAPbI3 film is faster than that of PVSK film. The fullerene pyridine derivatives (C60OPD), which function as a buffer layer between SnO2 and PVSK to scavenge O2•− and prevent degradation at the buried interface of the PVSK film, reduce the density of defect states, and accelerate the transmission of photogenerated electrons. The photoelectric conversion efficiency (PCE) of perovskite solar cells (PSCs) optimizes with C60OPD increased from 21.15% to 23.11% while significantly improving the stability in light/O2. This work reveals the hidden degradation of perovskite‐buried interfaces caused by O2•− and explores efficient ways for perovskite to resist O2•−.
Perovskite crystals can generate superoxide radicals (O2•−) in an air atmosphere, leading to hidden degradation at the buried interface. As an O2•– scavenger, the fullerene pyridine derivatives (C60OPD) eliminate this degradation and improve device efficiency. |
doi_str_mv | 10.1002/smll.202404677 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3117997237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3117997237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2587-7c1e00a8894590acea79d161d40eb8b24aa2cfc6d94e01057c60187f203404993</originalsourceid><addsrcrecordid>eNqFkctPGzEQhy1UVELolWNlqZdeEsaPrNfHNuUlBYFIe1453lnV6WY39YOQ_x5HgSD10pPH0udvxvMj5JzBmAHwi7Bq2zEHLkEWSh2RASuYGBUl1x8ONYMTchrCEkAwLtVHciK05FwUMCDpGjv0Jrq-o6ar6bRF401nkfYNnac1-v7Z1UgfTe2saQM1kX5P3mFNb7uIvjEWw459yORT-ONivm5c_E1_uKZBj12kU78N0bR0Hn2yMXkMZ-S4yTL89HoOya-ry5_Tm9Hs_vp2-m02snxSqpGyDAFMWWo50ZA7GaXr_KlaAi7KBZfGcNvYotYSgcFE2QJYqRoOIu9DazEkX_fete__JgyxWrlgsW1Nh30KlWBMaa24UBn98g-67JPv8nSZkiKvmMkyU-M9ZX0fgsemWnu3Mn5bMah2gVS7QKpDIPnB51dtWqywPuBvCWRA74GNa3H7H101v5vN3uUvQqWX1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3143202148</pqid></control><display><type>article</type><title>Generation and Clearance of Superoxide Radicals at Buried Interfaces of Perovskites with Different Crystal Structures</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Liao, Ling ; Jin, Bo ; Guo, Zhicheng ; Zhao, Yang ; Zheng, Tian ; Fan, Lisheng ; Wang, Chengrong ; Peng, Rufang</creator><creatorcontrib>Liao, Ling ; Jin, Bo ; Guo, Zhicheng ; Zhao, Yang ; Zheng, Tian ; Fan, Lisheng ; Wang, Chengrong ; Peng, Rufang</creatorcontrib><description>One of the most notorious issues with classic perovskite (MAPbI3) is its rapid degradation caused by generating superoxide radicals (O2•−) on its surface under light and oxygen environments (light/O2). The differences in O2•− generation rate and tolerance to O2•− among perovskite with different structures are pending. For the first time it is validated through solid‐electron paramagnetic resonance (EPR) that MAPbI3 and Cs0.175FA0.75MA0.075PbI3 (PVSK) crystals can generate O2•− in an air atmosphere. The rapid degradation of perovskite buried interfaces caused by O2•− dominates the nonexposed air aging process of SnO2‐based perovskite film, and the degradation rate of MAPbI3 film is faster than that of PVSK film. The fullerene pyridine derivatives (C60OPD), which function as a buffer layer between SnO2 and PVSK to scavenge O2•− and prevent degradation at the buried interface of the PVSK film, reduce the density of defect states, and accelerate the transmission of photogenerated electrons. The photoelectric conversion efficiency (PCE) of perovskite solar cells (PSCs) optimizes with C60OPD increased from 21.15% to 23.11% while significantly improving the stability in light/O2. This work reveals the hidden degradation of perovskite‐buried interfaces caused by O2•− and explores efficient ways for perovskite to resist O2•−.
Perovskite crystals can generate superoxide radicals (O2•−) in an air atmosphere, leading to hidden degradation at the buried interface. As an O2•– scavenger, the fullerene pyridine derivatives (C60OPD) eliminate this degradation and improve device efficiency.</description><identifier>ISSN: 1613-6810</identifier><identifier>ISSN: 1613-6829</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202404677</identifier><identifier>PMID: 39422360</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Buffer layers ; buried interface ; Buried structures ; Crystal defects ; Electron paramagnetic resonance ; Electrons ; Energy conversion efficiency ; fullerene pyridine derivatives ; Interface stability ; perovskite ; Perovskites ; Photodegradation ; Photoelectricity ; Photovoltaic cells ; Solar cells ; stability ; superoxide radicals ; Tin dioxide</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-10, Vol.20 (50), p.e2404677-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2587-7c1e00a8894590acea79d161d40eb8b24aa2cfc6d94e01057c60187f203404993</cites><orcidid>0000-0002-6966-2876</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202404677$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202404677$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39422360$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liao, Ling</creatorcontrib><creatorcontrib>Jin, Bo</creatorcontrib><creatorcontrib>Guo, Zhicheng</creatorcontrib><creatorcontrib>Zhao, Yang</creatorcontrib><creatorcontrib>Zheng, Tian</creatorcontrib><creatorcontrib>Fan, Lisheng</creatorcontrib><creatorcontrib>Wang, Chengrong</creatorcontrib><creatorcontrib>Peng, Rufang</creatorcontrib><title>Generation and Clearance of Superoxide Radicals at Buried Interfaces of Perovskites with Different Crystal Structures</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>One of the most notorious issues with classic perovskite (MAPbI3) is its rapid degradation caused by generating superoxide radicals (O2•−) on its surface under light and oxygen environments (light/O2). The differences in O2•− generation rate and tolerance to O2•− among perovskite with different structures are pending. For the first time it is validated through solid‐electron paramagnetic resonance (EPR) that MAPbI3 and Cs0.175FA0.75MA0.075PbI3 (PVSK) crystals can generate O2•− in an air atmosphere. The rapid degradation of perovskite buried interfaces caused by O2•− dominates the nonexposed air aging process of SnO2‐based perovskite film, and the degradation rate of MAPbI3 film is faster than that of PVSK film. The fullerene pyridine derivatives (C60OPD), which function as a buffer layer between SnO2 and PVSK to scavenge O2•− and prevent degradation at the buried interface of the PVSK film, reduce the density of defect states, and accelerate the transmission of photogenerated electrons. The photoelectric conversion efficiency (PCE) of perovskite solar cells (PSCs) optimizes with C60OPD increased from 21.15% to 23.11% while significantly improving the stability in light/O2. This work reveals the hidden degradation of perovskite‐buried interfaces caused by O2•− and explores efficient ways for perovskite to resist O2•−.
Perovskite crystals can generate superoxide radicals (O2•−) in an air atmosphere, leading to hidden degradation at the buried interface. As an O2•– scavenger, the fullerene pyridine derivatives (C60OPD) eliminate this degradation and improve device efficiency.</description><subject>Buffer layers</subject><subject>buried interface</subject><subject>Buried structures</subject><subject>Crystal defects</subject><subject>Electron paramagnetic resonance</subject><subject>Electrons</subject><subject>Energy conversion efficiency</subject><subject>fullerene pyridine derivatives</subject><subject>Interface stability</subject><subject>perovskite</subject><subject>Perovskites</subject><subject>Photodegradation</subject><subject>Photoelectricity</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>stability</subject><subject>superoxide radicals</subject><subject>Tin dioxide</subject><issn>1613-6810</issn><issn>1613-6829</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkctPGzEQhy1UVELolWNlqZdeEsaPrNfHNuUlBYFIe1453lnV6WY39YOQ_x5HgSD10pPH0udvxvMj5JzBmAHwi7Bq2zEHLkEWSh2RASuYGBUl1x8ONYMTchrCEkAwLtVHciK05FwUMCDpGjv0Jrq-o6ar6bRF401nkfYNnac1-v7Z1UgfTe2saQM1kX5P3mFNb7uIvjEWw459yORT-ONivm5c_E1_uKZBj12kU78N0bR0Hn2yMXkMZ-S4yTL89HoOya-ry5_Tm9Hs_vp2-m02snxSqpGyDAFMWWo50ZA7GaXr_KlaAi7KBZfGcNvYotYSgcFE2QJYqRoOIu9DazEkX_fete__JgyxWrlgsW1Nh30KlWBMaa24UBn98g-67JPv8nSZkiKvmMkyU-M9ZX0fgsemWnu3Mn5bMah2gVS7QKpDIPnB51dtWqywPuBvCWRA74GNa3H7H101v5vN3uUvQqWX1g</recordid><startdate>20241018</startdate><enddate>20241018</enddate><creator>Liao, Ling</creator><creator>Jin, Bo</creator><creator>Guo, Zhicheng</creator><creator>Zhao, Yang</creator><creator>Zheng, Tian</creator><creator>Fan, Lisheng</creator><creator>Wang, Chengrong</creator><creator>Peng, Rufang</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6966-2876</orcidid></search><sort><creationdate>20241018</creationdate><title>Generation and Clearance of Superoxide Radicals at Buried Interfaces of Perovskites with Different Crystal Structures</title><author>Liao, Ling ; Jin, Bo ; Guo, Zhicheng ; Zhao, Yang ; Zheng, Tian ; Fan, Lisheng ; Wang, Chengrong ; Peng, Rufang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2587-7c1e00a8894590acea79d161d40eb8b24aa2cfc6d94e01057c60187f203404993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Buffer layers</topic><topic>buried interface</topic><topic>Buried structures</topic><topic>Crystal defects</topic><topic>Electron paramagnetic resonance</topic><topic>Electrons</topic><topic>Energy conversion efficiency</topic><topic>fullerene pyridine derivatives</topic><topic>Interface stability</topic><topic>perovskite</topic><topic>Perovskites</topic><topic>Photodegradation</topic><topic>Photoelectricity</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>stability</topic><topic>superoxide radicals</topic><topic>Tin dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liao, Ling</creatorcontrib><creatorcontrib>Jin, Bo</creatorcontrib><creatorcontrib>Guo, Zhicheng</creatorcontrib><creatorcontrib>Zhao, Yang</creatorcontrib><creatorcontrib>Zheng, Tian</creatorcontrib><creatorcontrib>Fan, Lisheng</creatorcontrib><creatorcontrib>Wang, Chengrong</creatorcontrib><creatorcontrib>Peng, Rufang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liao, Ling</au><au>Jin, Bo</au><au>Guo, Zhicheng</au><au>Zhao, Yang</au><au>Zheng, Tian</au><au>Fan, Lisheng</au><au>Wang, Chengrong</au><au>Peng, Rufang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generation and Clearance of Superoxide Radicals at Buried Interfaces of Perovskites with Different Crystal Structures</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2024-10-18</date><risdate>2024</risdate><volume>20</volume><issue>50</issue><spage>e2404677</spage><epage>n/a</epage><pages>e2404677-n/a</pages><issn>1613-6810</issn><issn>1613-6829</issn><eissn>1613-6829</eissn><abstract>One of the most notorious issues with classic perovskite (MAPbI3) is its rapid degradation caused by generating superoxide radicals (O2•−) on its surface under light and oxygen environments (light/O2). The differences in O2•− generation rate and tolerance to O2•− among perovskite with different structures are pending. For the first time it is validated through solid‐electron paramagnetic resonance (EPR) that MAPbI3 and Cs0.175FA0.75MA0.075PbI3 (PVSK) crystals can generate O2•− in an air atmosphere. The rapid degradation of perovskite buried interfaces caused by O2•− dominates the nonexposed air aging process of SnO2‐based perovskite film, and the degradation rate of MAPbI3 film is faster than that of PVSK film. The fullerene pyridine derivatives (C60OPD), which function as a buffer layer between SnO2 and PVSK to scavenge O2•− and prevent degradation at the buried interface of the PVSK film, reduce the density of defect states, and accelerate the transmission of photogenerated electrons. The photoelectric conversion efficiency (PCE) of perovskite solar cells (PSCs) optimizes with C60OPD increased from 21.15% to 23.11% while significantly improving the stability in light/O2. This work reveals the hidden degradation of perovskite‐buried interfaces caused by O2•− and explores efficient ways for perovskite to resist O2•−.
Perovskite crystals can generate superoxide radicals (O2•−) in an air atmosphere, leading to hidden degradation at the buried interface. As an O2•– scavenger, the fullerene pyridine derivatives (C60OPD) eliminate this degradation and improve device efficiency.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39422360</pmid><doi>10.1002/smll.202404677</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6966-2876</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2024-10, Vol.20 (50), p.e2404677-n/a |
issn | 1613-6810 1613-6829 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_3117997237 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | Buffer layers buried interface Buried structures Crystal defects Electron paramagnetic resonance Electrons Energy conversion efficiency fullerene pyridine derivatives Interface stability perovskite Perovskites Photodegradation Photoelectricity Photovoltaic cells Solar cells stability superoxide radicals Tin dioxide |
title | Generation and Clearance of Superoxide Radicals at Buried Interfaces of Perovskites with Different Crystal Structures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T06%3A45%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generation%20and%20Clearance%20of%20Superoxide%20Radicals%20at%20Buried%20Interfaces%20of%20Perovskites%20with%20Different%20Crystal%20Structures&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Liao,%20Ling&rft.date=2024-10-18&rft.volume=20&rft.issue=50&rft.spage=e2404677&rft.epage=n/a&rft.pages=e2404677-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202404677&rft_dat=%3Cproquest_cross%3E3117997237%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3143202148&rft_id=info:pmid/39422360&rfr_iscdi=true |