Synthesis, characterization, and application of novel fluorescent sporopollenin for effective detection of mercury (II) ions from aqueous media

In this investigation, a novel environmentally friendly functionalized fluorescent Sp-TAB hybrid material was advanced for the sensitive detection of environmentally polluting Hg(II). The characterization of the synthesized fluorescent Sp-TAB hybrid material using SEM and EDX provided insights into...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2024-11, Vol.281 (Pt 2), p.135754, Article 135754
Hauptverfasser: Bayrak, Melike, Cimen, Aysel, Bilgic, Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this investigation, a novel environmentally friendly functionalized fluorescent Sp-TAB hybrid material was advanced for the sensitive detection of environmentally polluting Hg(II). The characterization of the synthesized fluorescent Sp-TAB hybrid material using SEM and EDX provided insights into morphological and structural changes in the material's pore structure, while XRD and FT-IR analyses revealed the impact of the prepared material at each stage. Optimal parameters such as temperature, contact time, and pH influencing Hg(II) ion detection were determined. Application of the fluorescent Sp-TAB hybrid material was determined a detection limit (LOD) of 4.87 μM for Hg(II) ions. This study shows the potential of the immobilization-enhanced fluorescent Sp-TAB hybrid material for sensitive Hg(II) ion detection in tap water. Additionally, this study is believed to serve as a model for sensitive and practical detection applications of heavy metals in the future. [Display omitted] •Environmentally friendly fluorescent Sp-TAB hybrid material was successfully synthesized for the detection of Hg(II) ions.•The fluorescent Sp-TAB hybrid material surface was characterized by some techniques such as FT-IR, SEM, EDX, TGA, and XRD.•The photophysical measurements were fluorometrically performed for the detection of Hg(II) ions (LOD: 4.87 µM).
ISSN:0141-8130
1879-0003
1879-0003
DOI:10.1016/j.ijbiomac.2024.135754