Development of a Single Vial Mass Flow Rate Monitor to Assess Pharmaceutical Freeze Drying Heterogeneity
During pharmaceutical lyophilization processes, inter-vial drying heterogeneity remains a significant obstacle. Due to differences in heat and mass transfer based on vial position within the freeze drier, edge vials freeze differently, are typically warmer and dry faster than center vials. This vial...
Gespeichert in:
Veröffentlicht in: | AAPS PharmSciTech 2024-10, Vol.25 (8), p.245, Article 245 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | 245 |
container_title | AAPS PharmSciTech |
container_volume | 25 |
creator | Yu, Tiffany Marx, Richard Hinds, Michael Schott, Nicholas Gong, Emily Yoon, Seongkyu Kessler, William |
description | During pharmaceutical lyophilization processes, inter-vial drying heterogeneity remains a significant obstacle. Due to differences in heat and mass transfer based on vial position within the freeze drier, edge vials freeze differently, are typically warmer and dry faster than center vials. This vial position-dependent heterogeneity within the freeze dryer leads to tradeoffs during process development. During primary drying, process developers must be careful to avoid shelf temperatures that would result in overheating of edge vials causing the product sublimation interface temperature to rise above the critical (collapse) temperature. However, at lower shelf temperatures, center vials require longer to complete primary drying, risking collapse or melt-back due to incomplete drying. Both situations may result in poor product quality affecting drug stability, activity, and reconstitution times. We present a new approach for monitoring vial location-specific water vapor mass flow based on Tunable Diode Laser Absorption Spectroscopy (TDLAS). The single vial monitor enables measurement of the gas flow velocity, water vapor temperature, and gas concentration from the sublimating ice, enabling the calculation of the mass flow rate which can be used in combination with a heat and mass transfer model to determine vial heat transfer coefficients and product resistance to drying. These parameters can in turn be used for robust and rapid process development and control.
Graphical Abstract |
doi_str_mv | 10.1208/s12249-024-02961-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3117994100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3117994100</sourcerecordid><originalsourceid>FETCH-LOGICAL-c228t-a3b1eed14f1233c2459a2d607f822c2db6bf8a34496037b0e5c5970fc4efc5703</originalsourceid><addsrcrecordid>eNp9kE1PAjEQhhujEUT_gAfTo5fVfuwHPRIQMYFo_Lo23TILS3a32HY1-OstgsaTh0knnWfeZB6Ezim5ooz0rx1lLBYRYXEokdKIHKAuTTiJhODs8E_fQSfOrQhhnAp-jDpcxDT8p120HME7VGZdQ-OxKbDCT2WzqAC_lqrCM-UcHlfmAz8qD3hmmtIbi73BA-cgzB6WytZKQ-tLHfixBfgEPLKbEIIn4MGaBTRQ-s0pOipU5eBs__bQy_jmeTiJpve3d8PBNNKM9X2keE4B5jQuKONcszgRis1TkhV9xjSb52le9BWPY5ESnuUEEp2IjBQ6hkInGeE9dLnLXVvz1oLzsi6dhqpSDZjWSU5pJsL5ZIuyHaqtcc5CIde2rJXdSErk1rDcGZbBsPw2LLdLF_v8Nq9h_rvyozQAfAe4MGoWYOXKtLYJN_8X-wWfDIa-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3117994100</pqid></control><display><type>article</type><title>Development of a Single Vial Mass Flow Rate Monitor to Assess Pharmaceutical Freeze Drying Heterogeneity</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Yu, Tiffany ; Marx, Richard ; Hinds, Michael ; Schott, Nicholas ; Gong, Emily ; Yoon, Seongkyu ; Kessler, William</creator><creatorcontrib>Yu, Tiffany ; Marx, Richard ; Hinds, Michael ; Schott, Nicholas ; Gong, Emily ; Yoon, Seongkyu ; Kessler, William</creatorcontrib><description>During pharmaceutical lyophilization processes, inter-vial drying heterogeneity remains a significant obstacle. Due to differences in heat and mass transfer based on vial position within the freeze drier, edge vials freeze differently, are typically warmer and dry faster than center vials. This vial position-dependent heterogeneity within the freeze dryer leads to tradeoffs during process development. During primary drying, process developers must be careful to avoid shelf temperatures that would result in overheating of edge vials causing the product sublimation interface temperature to rise above the critical (collapse) temperature. However, at lower shelf temperatures, center vials require longer to complete primary drying, risking collapse or melt-back due to incomplete drying. Both situations may result in poor product quality affecting drug stability, activity, and reconstitution times. We present a new approach for monitoring vial location-specific water vapor mass flow based on Tunable Diode Laser Absorption Spectroscopy (TDLAS). The single vial monitor enables measurement of the gas flow velocity, water vapor temperature, and gas concentration from the sublimating ice, enabling the calculation of the mass flow rate which can be used in combination with a heat and mass transfer model to determine vial heat transfer coefficients and product resistance to drying. These parameters can in turn be used for robust and rapid process development and control.
Graphical Abstract</description><identifier>ISSN: 1530-9932</identifier><identifier>EISSN: 1530-9932</identifier><identifier>DOI: 10.1208/s12249-024-02961-0</identifier><identifier>PMID: 39419936</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Biotechnology ; Chemistry, Pharmaceutical - methods ; Drug Stability ; Freeze Drying - methods ; Hot Temperature ; Pharmaceutical Preparations - chemistry ; Pharmacology/Toxicology ; Pharmacy ; Research Article ; Technology, Pharmaceutical - methods ; Temperature ; Water - chemistry</subject><ispartof>AAPS PharmSciTech, 2024-10, Vol.25 (8), p.245, Article 245</ispartof><rights>The Author(s), under exclusive licence to American Association of Pharmaceutical Scientists 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to American Association of Pharmaceutical Scientists.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c228t-a3b1eed14f1233c2459a2d607f822c2db6bf8a34496037b0e5c5970fc4efc5703</cites><orcidid>0009-0005-6636-4012</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1208/s12249-024-02961-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1208/s12249-024-02961-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39419936$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Tiffany</creatorcontrib><creatorcontrib>Marx, Richard</creatorcontrib><creatorcontrib>Hinds, Michael</creatorcontrib><creatorcontrib>Schott, Nicholas</creatorcontrib><creatorcontrib>Gong, Emily</creatorcontrib><creatorcontrib>Yoon, Seongkyu</creatorcontrib><creatorcontrib>Kessler, William</creatorcontrib><title>Development of a Single Vial Mass Flow Rate Monitor to Assess Pharmaceutical Freeze Drying Heterogeneity</title><title>AAPS PharmSciTech</title><addtitle>AAPS PharmSciTech</addtitle><addtitle>AAPS PharmSciTech</addtitle><description>During pharmaceutical lyophilization processes, inter-vial drying heterogeneity remains a significant obstacle. Due to differences in heat and mass transfer based on vial position within the freeze drier, edge vials freeze differently, are typically warmer and dry faster than center vials. This vial position-dependent heterogeneity within the freeze dryer leads to tradeoffs during process development. During primary drying, process developers must be careful to avoid shelf temperatures that would result in overheating of edge vials causing the product sublimation interface temperature to rise above the critical (collapse) temperature. However, at lower shelf temperatures, center vials require longer to complete primary drying, risking collapse or melt-back due to incomplete drying. Both situations may result in poor product quality affecting drug stability, activity, and reconstitution times. We present a new approach for monitoring vial location-specific water vapor mass flow based on Tunable Diode Laser Absorption Spectroscopy (TDLAS). The single vial monitor enables measurement of the gas flow velocity, water vapor temperature, and gas concentration from the sublimating ice, enabling the calculation of the mass flow rate which can be used in combination with a heat and mass transfer model to determine vial heat transfer coefficients and product resistance to drying. These parameters can in turn be used for robust and rapid process development and control.
Graphical Abstract</description><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Chemistry, Pharmaceutical - methods</subject><subject>Drug Stability</subject><subject>Freeze Drying - methods</subject><subject>Hot Temperature</subject><subject>Pharmaceutical Preparations - chemistry</subject><subject>Pharmacology/Toxicology</subject><subject>Pharmacy</subject><subject>Research Article</subject><subject>Technology, Pharmaceutical - methods</subject><subject>Temperature</subject><subject>Water - chemistry</subject><issn>1530-9932</issn><issn>1530-9932</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1PAjEQhhujEUT_gAfTo5fVfuwHPRIQMYFo_Lo23TILS3a32HY1-OstgsaTh0knnWfeZB6Ezim5ooz0rx1lLBYRYXEokdKIHKAuTTiJhODs8E_fQSfOrQhhnAp-jDpcxDT8p120HME7VGZdQ-OxKbDCT2WzqAC_lqrCM-UcHlfmAz8qD3hmmtIbi73BA-cgzB6WytZKQ-tLHfixBfgEPLKbEIIn4MGaBTRQ-s0pOipU5eBs__bQy_jmeTiJpve3d8PBNNKM9X2keE4B5jQuKONcszgRis1TkhV9xjSb52le9BWPY5ESnuUEEp2IjBQ6hkInGeE9dLnLXVvz1oLzsi6dhqpSDZjWSU5pJsL5ZIuyHaqtcc5CIde2rJXdSErk1rDcGZbBsPw2LLdLF_v8Nq9h_rvyozQAfAe4MGoWYOXKtLYJN_8X-wWfDIa-</recordid><startdate>20241017</startdate><enddate>20241017</enddate><creator>Yu, Tiffany</creator><creator>Marx, Richard</creator><creator>Hinds, Michael</creator><creator>Schott, Nicholas</creator><creator>Gong, Emily</creator><creator>Yoon, Seongkyu</creator><creator>Kessler, William</creator><general>Springer International Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0005-6636-4012</orcidid></search><sort><creationdate>20241017</creationdate><title>Development of a Single Vial Mass Flow Rate Monitor to Assess Pharmaceutical Freeze Drying Heterogeneity</title><author>Yu, Tiffany ; Marx, Richard ; Hinds, Michael ; Schott, Nicholas ; Gong, Emily ; Yoon, Seongkyu ; Kessler, William</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c228t-a3b1eed14f1233c2459a2d607f822c2db6bf8a34496037b0e5c5970fc4efc5703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Chemistry, Pharmaceutical - methods</topic><topic>Drug Stability</topic><topic>Freeze Drying - methods</topic><topic>Hot Temperature</topic><topic>Pharmaceutical Preparations - chemistry</topic><topic>Pharmacology/Toxicology</topic><topic>Pharmacy</topic><topic>Research Article</topic><topic>Technology, Pharmaceutical - methods</topic><topic>Temperature</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Tiffany</creatorcontrib><creatorcontrib>Marx, Richard</creatorcontrib><creatorcontrib>Hinds, Michael</creatorcontrib><creatorcontrib>Schott, Nicholas</creatorcontrib><creatorcontrib>Gong, Emily</creatorcontrib><creatorcontrib>Yoon, Seongkyu</creatorcontrib><creatorcontrib>Kessler, William</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>AAPS PharmSciTech</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Tiffany</au><au>Marx, Richard</au><au>Hinds, Michael</au><au>Schott, Nicholas</au><au>Gong, Emily</au><au>Yoon, Seongkyu</au><au>Kessler, William</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a Single Vial Mass Flow Rate Monitor to Assess Pharmaceutical Freeze Drying Heterogeneity</atitle><jtitle>AAPS PharmSciTech</jtitle><stitle>AAPS PharmSciTech</stitle><addtitle>AAPS PharmSciTech</addtitle><date>2024-10-17</date><risdate>2024</risdate><volume>25</volume><issue>8</issue><spage>245</spage><pages>245-</pages><artnum>245</artnum><issn>1530-9932</issn><eissn>1530-9932</eissn><abstract>During pharmaceutical lyophilization processes, inter-vial drying heterogeneity remains a significant obstacle. Due to differences in heat and mass transfer based on vial position within the freeze drier, edge vials freeze differently, are typically warmer and dry faster than center vials. This vial position-dependent heterogeneity within the freeze dryer leads to tradeoffs during process development. During primary drying, process developers must be careful to avoid shelf temperatures that would result in overheating of edge vials causing the product sublimation interface temperature to rise above the critical (collapse) temperature. However, at lower shelf temperatures, center vials require longer to complete primary drying, risking collapse or melt-back due to incomplete drying. Both situations may result in poor product quality affecting drug stability, activity, and reconstitution times. We present a new approach for monitoring vial location-specific water vapor mass flow based on Tunable Diode Laser Absorption Spectroscopy (TDLAS). The single vial monitor enables measurement of the gas flow velocity, water vapor temperature, and gas concentration from the sublimating ice, enabling the calculation of the mass flow rate which can be used in combination with a heat and mass transfer model to determine vial heat transfer coefficients and product resistance to drying. These parameters can in turn be used for robust and rapid process development and control.
Graphical Abstract</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>39419936</pmid><doi>10.1208/s12249-024-02961-0</doi><orcidid>https://orcid.org/0009-0005-6636-4012</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-9932 |
ispartof | AAPS PharmSciTech, 2024-10, Vol.25 (8), p.245, Article 245 |
issn | 1530-9932 1530-9932 |
language | eng |
recordid | cdi_proquest_miscellaneous_3117994100 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Biochemistry Biomedical and Life Sciences Biomedicine Biotechnology Chemistry, Pharmaceutical - methods Drug Stability Freeze Drying - methods Hot Temperature Pharmaceutical Preparations - chemistry Pharmacology/Toxicology Pharmacy Research Article Technology, Pharmaceutical - methods Temperature Water - chemistry |
title | Development of a Single Vial Mass Flow Rate Monitor to Assess Pharmaceutical Freeze Drying Heterogeneity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T16%3A23%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20Single%20Vial%20Mass%20Flow%20Rate%20Monitor%20to%20Assess%20Pharmaceutical%20Freeze%20Drying%20Heterogeneity&rft.jtitle=AAPS%20PharmSciTech&rft.au=Yu,%20Tiffany&rft.date=2024-10-17&rft.volume=25&rft.issue=8&rft.spage=245&rft.pages=245-&rft.artnum=245&rft.issn=1530-9932&rft.eissn=1530-9932&rft_id=info:doi/10.1208/s12249-024-02961-0&rft_dat=%3Cproquest_cross%3E3117994100%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3117994100&rft_id=info:pmid/39419936&rfr_iscdi=true |