Development of a Single Vial Mass Flow Rate Monitor to Assess Pharmaceutical Freeze Drying Heterogeneity

During pharmaceutical lyophilization processes, inter-vial drying heterogeneity remains a significant obstacle. Due to differences in heat and mass transfer based on vial position within the freeze drier, edge vials freeze differently, are typically warmer and dry faster than center vials. This vial...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AAPS PharmSciTech 2024-10, Vol.25 (8), p.245, Article 245
Hauptverfasser: Yu, Tiffany, Marx, Richard, Hinds, Michael, Schott, Nicholas, Gong, Emily, Yoon, Seongkyu, Kessler, William
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page 245
container_title AAPS PharmSciTech
container_volume 25
creator Yu, Tiffany
Marx, Richard
Hinds, Michael
Schott, Nicholas
Gong, Emily
Yoon, Seongkyu
Kessler, William
description During pharmaceutical lyophilization processes, inter-vial drying heterogeneity remains a significant obstacle. Due to differences in heat and mass transfer based on vial position within the freeze drier, edge vials freeze differently, are typically warmer and dry faster than center vials. This vial position-dependent heterogeneity within the freeze dryer leads to tradeoffs during process development. During primary drying, process developers must be careful to avoid shelf temperatures that would result in overheating of edge vials causing the product sublimation interface temperature to rise above the critical (collapse) temperature. However, at lower shelf temperatures, center vials require longer to complete primary drying, risking collapse or melt-back due to incomplete drying. Both situations may result in poor product quality affecting drug stability, activity, and reconstitution times. We present a new approach for monitoring vial location-specific water vapor mass flow based on Tunable Diode Laser Absorption Spectroscopy (TDLAS). The single vial monitor enables measurement of the gas flow velocity, water vapor temperature, and gas concentration from the sublimating ice, enabling the calculation of the mass flow rate which can be used in combination with a heat and mass transfer model to determine vial heat transfer coefficients and product resistance to drying. These parameters can in turn be used for robust and rapid process development and control. Graphical Abstract
doi_str_mv 10.1208/s12249-024-02961-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3117994100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3117994100</sourcerecordid><originalsourceid>FETCH-LOGICAL-c228t-a3b1eed14f1233c2459a2d607f822c2db6bf8a34496037b0e5c5970fc4efc5703</originalsourceid><addsrcrecordid>eNp9kE1PAjEQhhujEUT_gAfTo5fVfuwHPRIQMYFo_Lo23TILS3a32HY1-OstgsaTh0knnWfeZB6Ezim5ooz0rx1lLBYRYXEokdKIHKAuTTiJhODs8E_fQSfOrQhhnAp-jDpcxDT8p120HME7VGZdQ-OxKbDCT2WzqAC_lqrCM-UcHlfmAz8qD3hmmtIbi73BA-cgzB6WytZKQ-tLHfixBfgEPLKbEIIn4MGaBTRQ-s0pOipU5eBs__bQy_jmeTiJpve3d8PBNNKM9X2keE4B5jQuKONcszgRis1TkhV9xjSb52le9BWPY5ESnuUEEp2IjBQ6hkInGeE9dLnLXVvz1oLzsi6dhqpSDZjWSU5pJsL5ZIuyHaqtcc5CIde2rJXdSErk1rDcGZbBsPw2LLdLF_v8Nq9h_rvyozQAfAe4MGoWYOXKtLYJN_8X-wWfDIa-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3117994100</pqid></control><display><type>article</type><title>Development of a Single Vial Mass Flow Rate Monitor to Assess Pharmaceutical Freeze Drying Heterogeneity</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Yu, Tiffany ; Marx, Richard ; Hinds, Michael ; Schott, Nicholas ; Gong, Emily ; Yoon, Seongkyu ; Kessler, William</creator><creatorcontrib>Yu, Tiffany ; Marx, Richard ; Hinds, Michael ; Schott, Nicholas ; Gong, Emily ; Yoon, Seongkyu ; Kessler, William</creatorcontrib><description>During pharmaceutical lyophilization processes, inter-vial drying heterogeneity remains a significant obstacle. Due to differences in heat and mass transfer based on vial position within the freeze drier, edge vials freeze differently, are typically warmer and dry faster than center vials. This vial position-dependent heterogeneity within the freeze dryer leads to tradeoffs during process development. During primary drying, process developers must be careful to avoid shelf temperatures that would result in overheating of edge vials causing the product sublimation interface temperature to rise above the critical (collapse) temperature. However, at lower shelf temperatures, center vials require longer to complete primary drying, risking collapse or melt-back due to incomplete drying. Both situations may result in poor product quality affecting drug stability, activity, and reconstitution times. We present a new approach for monitoring vial location-specific water vapor mass flow based on Tunable Diode Laser Absorption Spectroscopy (TDLAS). The single vial monitor enables measurement of the gas flow velocity, water vapor temperature, and gas concentration from the sublimating ice, enabling the calculation of the mass flow rate which can be used in combination with a heat and mass transfer model to determine vial heat transfer coefficients and product resistance to drying. These parameters can in turn be used for robust and rapid process development and control. Graphical Abstract</description><identifier>ISSN: 1530-9932</identifier><identifier>EISSN: 1530-9932</identifier><identifier>DOI: 10.1208/s12249-024-02961-0</identifier><identifier>PMID: 39419936</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Biotechnology ; Chemistry, Pharmaceutical - methods ; Drug Stability ; Freeze Drying - methods ; Hot Temperature ; Pharmaceutical Preparations - chemistry ; Pharmacology/Toxicology ; Pharmacy ; Research Article ; Technology, Pharmaceutical - methods ; Temperature ; Water - chemistry</subject><ispartof>AAPS PharmSciTech, 2024-10, Vol.25 (8), p.245, Article 245</ispartof><rights>The Author(s), under exclusive licence to American Association of Pharmaceutical Scientists 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to American Association of Pharmaceutical Scientists.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c228t-a3b1eed14f1233c2459a2d607f822c2db6bf8a34496037b0e5c5970fc4efc5703</cites><orcidid>0009-0005-6636-4012</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1208/s12249-024-02961-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1208/s12249-024-02961-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39419936$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Tiffany</creatorcontrib><creatorcontrib>Marx, Richard</creatorcontrib><creatorcontrib>Hinds, Michael</creatorcontrib><creatorcontrib>Schott, Nicholas</creatorcontrib><creatorcontrib>Gong, Emily</creatorcontrib><creatorcontrib>Yoon, Seongkyu</creatorcontrib><creatorcontrib>Kessler, William</creatorcontrib><title>Development of a Single Vial Mass Flow Rate Monitor to Assess Pharmaceutical Freeze Drying Heterogeneity</title><title>AAPS PharmSciTech</title><addtitle>AAPS PharmSciTech</addtitle><addtitle>AAPS PharmSciTech</addtitle><description>During pharmaceutical lyophilization processes, inter-vial drying heterogeneity remains a significant obstacle. Due to differences in heat and mass transfer based on vial position within the freeze drier, edge vials freeze differently, are typically warmer and dry faster than center vials. This vial position-dependent heterogeneity within the freeze dryer leads to tradeoffs during process development. During primary drying, process developers must be careful to avoid shelf temperatures that would result in overheating of edge vials causing the product sublimation interface temperature to rise above the critical (collapse) temperature. However, at lower shelf temperatures, center vials require longer to complete primary drying, risking collapse or melt-back due to incomplete drying. Both situations may result in poor product quality affecting drug stability, activity, and reconstitution times. We present a new approach for monitoring vial location-specific water vapor mass flow based on Tunable Diode Laser Absorption Spectroscopy (TDLAS). The single vial monitor enables measurement of the gas flow velocity, water vapor temperature, and gas concentration from the sublimating ice, enabling the calculation of the mass flow rate which can be used in combination with a heat and mass transfer model to determine vial heat transfer coefficients and product resistance to drying. These parameters can in turn be used for robust and rapid process development and control. Graphical Abstract</description><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Chemistry, Pharmaceutical - methods</subject><subject>Drug Stability</subject><subject>Freeze Drying - methods</subject><subject>Hot Temperature</subject><subject>Pharmaceutical Preparations - chemistry</subject><subject>Pharmacology/Toxicology</subject><subject>Pharmacy</subject><subject>Research Article</subject><subject>Technology, Pharmaceutical - methods</subject><subject>Temperature</subject><subject>Water - chemistry</subject><issn>1530-9932</issn><issn>1530-9932</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1PAjEQhhujEUT_gAfTo5fVfuwHPRIQMYFo_Lo23TILS3a32HY1-OstgsaTh0knnWfeZB6Ezim5ooz0rx1lLBYRYXEokdKIHKAuTTiJhODs8E_fQSfOrQhhnAp-jDpcxDT8p120HME7VGZdQ-OxKbDCT2WzqAC_lqrCM-UcHlfmAz8qD3hmmtIbi73BA-cgzB6WytZKQ-tLHfixBfgEPLKbEIIn4MGaBTRQ-s0pOipU5eBs__bQy_jmeTiJpve3d8PBNNKM9X2keE4B5jQuKONcszgRis1TkhV9xjSb52le9BWPY5ESnuUEEp2IjBQ6hkInGeE9dLnLXVvz1oLzsi6dhqpSDZjWSU5pJsL5ZIuyHaqtcc5CIde2rJXdSErk1rDcGZbBsPw2LLdLF_v8Nq9h_rvyozQAfAe4MGoWYOXKtLYJN_8X-wWfDIa-</recordid><startdate>20241017</startdate><enddate>20241017</enddate><creator>Yu, Tiffany</creator><creator>Marx, Richard</creator><creator>Hinds, Michael</creator><creator>Schott, Nicholas</creator><creator>Gong, Emily</creator><creator>Yoon, Seongkyu</creator><creator>Kessler, William</creator><general>Springer International Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0005-6636-4012</orcidid></search><sort><creationdate>20241017</creationdate><title>Development of a Single Vial Mass Flow Rate Monitor to Assess Pharmaceutical Freeze Drying Heterogeneity</title><author>Yu, Tiffany ; Marx, Richard ; Hinds, Michael ; Schott, Nicholas ; Gong, Emily ; Yoon, Seongkyu ; Kessler, William</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c228t-a3b1eed14f1233c2459a2d607f822c2db6bf8a34496037b0e5c5970fc4efc5703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Chemistry, Pharmaceutical - methods</topic><topic>Drug Stability</topic><topic>Freeze Drying - methods</topic><topic>Hot Temperature</topic><topic>Pharmaceutical Preparations - chemistry</topic><topic>Pharmacology/Toxicology</topic><topic>Pharmacy</topic><topic>Research Article</topic><topic>Technology, Pharmaceutical - methods</topic><topic>Temperature</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Tiffany</creatorcontrib><creatorcontrib>Marx, Richard</creatorcontrib><creatorcontrib>Hinds, Michael</creatorcontrib><creatorcontrib>Schott, Nicholas</creatorcontrib><creatorcontrib>Gong, Emily</creatorcontrib><creatorcontrib>Yoon, Seongkyu</creatorcontrib><creatorcontrib>Kessler, William</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>AAPS PharmSciTech</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Tiffany</au><au>Marx, Richard</au><au>Hinds, Michael</au><au>Schott, Nicholas</au><au>Gong, Emily</au><au>Yoon, Seongkyu</au><au>Kessler, William</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a Single Vial Mass Flow Rate Monitor to Assess Pharmaceutical Freeze Drying Heterogeneity</atitle><jtitle>AAPS PharmSciTech</jtitle><stitle>AAPS PharmSciTech</stitle><addtitle>AAPS PharmSciTech</addtitle><date>2024-10-17</date><risdate>2024</risdate><volume>25</volume><issue>8</issue><spage>245</spage><pages>245-</pages><artnum>245</artnum><issn>1530-9932</issn><eissn>1530-9932</eissn><abstract>During pharmaceutical lyophilization processes, inter-vial drying heterogeneity remains a significant obstacle. Due to differences in heat and mass transfer based on vial position within the freeze drier, edge vials freeze differently, are typically warmer and dry faster than center vials. This vial position-dependent heterogeneity within the freeze dryer leads to tradeoffs during process development. During primary drying, process developers must be careful to avoid shelf temperatures that would result in overheating of edge vials causing the product sublimation interface temperature to rise above the critical (collapse) temperature. However, at lower shelf temperatures, center vials require longer to complete primary drying, risking collapse or melt-back due to incomplete drying. Both situations may result in poor product quality affecting drug stability, activity, and reconstitution times. We present a new approach for monitoring vial location-specific water vapor mass flow based on Tunable Diode Laser Absorption Spectroscopy (TDLAS). The single vial monitor enables measurement of the gas flow velocity, water vapor temperature, and gas concentration from the sublimating ice, enabling the calculation of the mass flow rate which can be used in combination with a heat and mass transfer model to determine vial heat transfer coefficients and product resistance to drying. These parameters can in turn be used for robust and rapid process development and control. Graphical Abstract</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>39419936</pmid><doi>10.1208/s12249-024-02961-0</doi><orcidid>https://orcid.org/0009-0005-6636-4012</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-9932
ispartof AAPS PharmSciTech, 2024-10, Vol.25 (8), p.245, Article 245
issn 1530-9932
1530-9932
language eng
recordid cdi_proquest_miscellaneous_3117994100
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Biochemistry
Biomedical and Life Sciences
Biomedicine
Biotechnology
Chemistry, Pharmaceutical - methods
Drug Stability
Freeze Drying - methods
Hot Temperature
Pharmaceutical Preparations - chemistry
Pharmacology/Toxicology
Pharmacy
Research Article
Technology, Pharmaceutical - methods
Temperature
Water - chemistry
title Development of a Single Vial Mass Flow Rate Monitor to Assess Pharmaceutical Freeze Drying Heterogeneity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T16%3A23%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20Single%20Vial%20Mass%20Flow%20Rate%20Monitor%20to%20Assess%20Pharmaceutical%20Freeze%20Drying%20Heterogeneity&rft.jtitle=AAPS%20PharmSciTech&rft.au=Yu,%20Tiffany&rft.date=2024-10-17&rft.volume=25&rft.issue=8&rft.spage=245&rft.pages=245-&rft.artnum=245&rft.issn=1530-9932&rft.eissn=1530-9932&rft_id=info:doi/10.1208/s12249-024-02961-0&rft_dat=%3Cproquest_cross%3E3117994100%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3117994100&rft_id=info:pmid/39419936&rfr_iscdi=true