Human assembloids reveal the consequences of CACNA1G gene variants in the thalamocortical pathway

Abnormalities in thalamocortical crosstalk can lead to neuropsychiatric disorders. Variants in CACNA1G, which encodes the α1G subunit of the thalamus-enriched T-type calcium channel, are associated with absence seizures, intellectual disability, and schizophrenia, but the cellular and circuit conseq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuron (Cambridge, Mass.) Mass.), 2024-12, Vol.112 (24), p.4048-4059.e7
Hauptverfasser: Kim, Ji-il, Miura, Yuki, Li, Min-Yin, Revah, Omer, Selvaraj, Sridhar, Birey, Fikri, Meng, Xiangling, Thete, Mayuri Vijay, Pavlov, Sergey D., Andersen, Jimena, Pașca, Anca M., Porteus, Matthew H., Huguenard, John R., Pașca, Sergiu P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4059.e7
container_issue 24
container_start_page 4048
container_title Neuron (Cambridge, Mass.)
container_volume 112
creator Kim, Ji-il
Miura, Yuki
Li, Min-Yin
Revah, Omer
Selvaraj, Sridhar
Birey, Fikri
Meng, Xiangling
Thete, Mayuri Vijay
Pavlov, Sergey D.
Andersen, Jimena
Pașca, Anca M.
Porteus, Matthew H.
Huguenard, John R.
Pașca, Sergiu P.
description Abnormalities in thalamocortical crosstalk can lead to neuropsychiatric disorders. Variants in CACNA1G, which encodes the α1G subunit of the thalamus-enriched T-type calcium channel, are associated with absence seizures, intellectual disability, and schizophrenia, but the cellular and circuit consequences of these genetic variants in humans remain unknown. Here, we developed a human assembloid model of the thalamocortical pathway to dissect the contribution of genetic variants in T-type calcium channels. We discovered that the M1531V CACNA1G variant associated with seizures led to changes in T-type currents in thalamic neurons, as well as correlated hyperactivity of thalamic and cortical neurons in assembloids. By contrast, CACNA1G loss, which has been associated with risk of schizophrenia, resulted in abnormal thalamocortical connectivity that was related to both increased spontaneous thalamic activity and aberrant axonal projections. These results illustrate the utility of multi-cellular systems for interrogating human genetic disease risk variants at both cellular and circuit level. •Generation of hiPS cell-derived diencephalic organoids containing thalamic neurons•Integration of cortical and diencephalic organoids to form thalamocortical assembloids•M1531V CACNA1G variant alters T-type currents, leading to hyperactivity in assembloids•Loss of CACNA1G changes thalamocortical connectivity and increases thalamic activity Kim et al. developed a human assembloid to investigate the effects of calcium channel function on the thalamocortical pathway. The M1531V CACNA1G variant altered T-type currents and induced hyperactivity, while CACNA1G loss changed connectivity and thalamic activity. This highlights the utility of assembloids in identifying circuit-level disease phenotypes.
doi_str_mv 10.1016/j.neuron.2024.09.020
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3117993878</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627324006925</els_id><sourcerecordid>3117993878</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-27af3bc3272d289ee702e91658670babd1e210337945c3bc0f8940a0f9193633</originalsourceid><addsrcrecordid>eNp9kMFO3DAQhq2qqGyBN0CVj1wSxnY2ji9IqxVlkVC5cLccZ8J6ldhbO1nE29fbpRx7mss3_z_zEXLNoGTA6ttd6XGOwZcceFWCKoHDF7JgoGRRMaW-kgU0qi5qLsU5-Z7SDoBVS8W-kXOhMgFcLIjZzKPx1KSEYzsE1yUa8YBmoNMWqQ0-4e8ZvcVEQ0_Xq_WvFXugr-iRHkx0xk-JOv8XnrZmMGOwIU7O5oC9mbZv5v2SnPVmSHj1MS_Iy8_7l_WmeHp-eFyvngrLGzkVXJpetFZwyTveKEQJHBWrl00toTVtx5AzEEKqamkzCH2jKjDQK6ZELcQFuTnF7mPIF6dJjy5ZHAbjMcxJC8akUqKRTUarE2pjSClir_fRjSa-awb66Fbv9MmtPrrVoHR2m9d-fDTM7Yjd59I_mRm4OwGY3zw4jDpZd3TXuYh20l1w_2_4A2KYjFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3117993878</pqid></control><display><type>article</type><title>Human assembloids reveal the consequences of CACNA1G gene variants in the thalamocortical pathway</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Kim, Ji-il ; Miura, Yuki ; Li, Min-Yin ; Revah, Omer ; Selvaraj, Sridhar ; Birey, Fikri ; Meng, Xiangling ; Thete, Mayuri Vijay ; Pavlov, Sergey D. ; Andersen, Jimena ; Pașca, Anca M. ; Porteus, Matthew H. ; Huguenard, John R. ; Pașca, Sergiu P.</creator><creatorcontrib>Kim, Ji-il ; Miura, Yuki ; Li, Min-Yin ; Revah, Omer ; Selvaraj, Sridhar ; Birey, Fikri ; Meng, Xiangling ; Thete, Mayuri Vijay ; Pavlov, Sergey D. ; Andersen, Jimena ; Pașca, Anca M. ; Porteus, Matthew H. ; Huguenard, John R. ; Pașca, Sergiu P.</creatorcontrib><description>Abnormalities in thalamocortical crosstalk can lead to neuropsychiatric disorders. Variants in CACNA1G, which encodes the α1G subunit of the thalamus-enriched T-type calcium channel, are associated with absence seizures, intellectual disability, and schizophrenia, but the cellular and circuit consequences of these genetic variants in humans remain unknown. Here, we developed a human assembloid model of the thalamocortical pathway to dissect the contribution of genetic variants in T-type calcium channels. We discovered that the M1531V CACNA1G variant associated with seizures led to changes in T-type currents in thalamic neurons, as well as correlated hyperactivity of thalamic and cortical neurons in assembloids. By contrast, CACNA1G loss, which has been associated with risk of schizophrenia, resulted in abnormal thalamocortical connectivity that was related to both increased spontaneous thalamic activity and aberrant axonal projections. These results illustrate the utility of multi-cellular systems for interrogating human genetic disease risk variants at both cellular and circuit level. •Generation of hiPS cell-derived diencephalic organoids containing thalamic neurons•Integration of cortical and diencephalic organoids to form thalamocortical assembloids•M1531V CACNA1G variant alters T-type currents, leading to hyperactivity in assembloids•Loss of CACNA1G changes thalamocortical connectivity and increases thalamic activity Kim et al. developed a human assembloid to investigate the effects of calcium channel function on the thalamocortical pathway. The M1531V CACNA1G variant altered T-type currents and induced hyperactivity, while CACNA1G loss changed connectivity and thalamic activity. This highlights the utility of assembloids in identifying circuit-level disease phenotypes.</description><identifier>ISSN: 0896-6273</identifier><identifier>ISSN: 1097-4199</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2024.09.020</identifier><identifier>PMID: 39419023</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>assembloids ; Calcium Channels, T-Type - genetics ; Cerebral Cortex ; disease ; Female ; Genetic Variation - genetics ; Humans ; Male ; Neural Pathways ; Neurons - metabolism ; organoids ; thalamocortical ; thalamus ; Thalamus - metabolism</subject><ispartof>Neuron (Cambridge, Mass.), 2024-12, Vol.112 (24), p.4048-4059.e7</ispartof><rights>2024 Elsevier Inc.</rights><rights>Copyright © 2024 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-27af3bc3272d289ee702e91658670babd1e210337945c3bc0f8940a0f9193633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0896627324006925$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39419023$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Ji-il</creatorcontrib><creatorcontrib>Miura, Yuki</creatorcontrib><creatorcontrib>Li, Min-Yin</creatorcontrib><creatorcontrib>Revah, Omer</creatorcontrib><creatorcontrib>Selvaraj, Sridhar</creatorcontrib><creatorcontrib>Birey, Fikri</creatorcontrib><creatorcontrib>Meng, Xiangling</creatorcontrib><creatorcontrib>Thete, Mayuri Vijay</creatorcontrib><creatorcontrib>Pavlov, Sergey D.</creatorcontrib><creatorcontrib>Andersen, Jimena</creatorcontrib><creatorcontrib>Pașca, Anca M.</creatorcontrib><creatorcontrib>Porteus, Matthew H.</creatorcontrib><creatorcontrib>Huguenard, John R.</creatorcontrib><creatorcontrib>Pașca, Sergiu P.</creatorcontrib><title>Human assembloids reveal the consequences of CACNA1G gene variants in the thalamocortical pathway</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Abnormalities in thalamocortical crosstalk can lead to neuropsychiatric disorders. Variants in CACNA1G, which encodes the α1G subunit of the thalamus-enriched T-type calcium channel, are associated with absence seizures, intellectual disability, and schizophrenia, but the cellular and circuit consequences of these genetic variants in humans remain unknown. Here, we developed a human assembloid model of the thalamocortical pathway to dissect the contribution of genetic variants in T-type calcium channels. We discovered that the M1531V CACNA1G variant associated with seizures led to changes in T-type currents in thalamic neurons, as well as correlated hyperactivity of thalamic and cortical neurons in assembloids. By contrast, CACNA1G loss, which has been associated with risk of schizophrenia, resulted in abnormal thalamocortical connectivity that was related to both increased spontaneous thalamic activity and aberrant axonal projections. These results illustrate the utility of multi-cellular systems for interrogating human genetic disease risk variants at both cellular and circuit level. •Generation of hiPS cell-derived diencephalic organoids containing thalamic neurons•Integration of cortical and diencephalic organoids to form thalamocortical assembloids•M1531V CACNA1G variant alters T-type currents, leading to hyperactivity in assembloids•Loss of CACNA1G changes thalamocortical connectivity and increases thalamic activity Kim et al. developed a human assembloid to investigate the effects of calcium channel function on the thalamocortical pathway. The M1531V CACNA1G variant altered T-type currents and induced hyperactivity, while CACNA1G loss changed connectivity and thalamic activity. This highlights the utility of assembloids in identifying circuit-level disease phenotypes.</description><subject>assembloids</subject><subject>Calcium Channels, T-Type - genetics</subject><subject>Cerebral Cortex</subject><subject>disease</subject><subject>Female</subject><subject>Genetic Variation - genetics</subject><subject>Humans</subject><subject>Male</subject><subject>Neural Pathways</subject><subject>Neurons - metabolism</subject><subject>organoids</subject><subject>thalamocortical</subject><subject>thalamus</subject><subject>Thalamus - metabolism</subject><issn>0896-6273</issn><issn>1097-4199</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMFO3DAQhq2qqGyBN0CVj1wSxnY2ji9IqxVlkVC5cLccZ8J6ldhbO1nE29fbpRx7mss3_z_zEXLNoGTA6ttd6XGOwZcceFWCKoHDF7JgoGRRMaW-kgU0qi5qLsU5-Z7SDoBVS8W-kXOhMgFcLIjZzKPx1KSEYzsE1yUa8YBmoNMWqQ0-4e8ZvcVEQ0_Xq_WvFXugr-iRHkx0xk-JOv8XnrZmMGOwIU7O5oC9mbZv5v2SnPVmSHj1MS_Iy8_7l_WmeHp-eFyvngrLGzkVXJpetFZwyTveKEQJHBWrl00toTVtx5AzEEKqamkzCH2jKjDQK6ZELcQFuTnF7mPIF6dJjy5ZHAbjMcxJC8akUqKRTUarE2pjSClir_fRjSa-awb66Fbv9MmtPrrVoHR2m9d-fDTM7Yjd59I_mRm4OwGY3zw4jDpZd3TXuYh20l1w_2_4A2KYjFg</recordid><startdate>20241218</startdate><enddate>20241218</enddate><creator>Kim, Ji-il</creator><creator>Miura, Yuki</creator><creator>Li, Min-Yin</creator><creator>Revah, Omer</creator><creator>Selvaraj, Sridhar</creator><creator>Birey, Fikri</creator><creator>Meng, Xiangling</creator><creator>Thete, Mayuri Vijay</creator><creator>Pavlov, Sergey D.</creator><creator>Andersen, Jimena</creator><creator>Pașca, Anca M.</creator><creator>Porteus, Matthew H.</creator><creator>Huguenard, John R.</creator><creator>Pașca, Sergiu P.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20241218</creationdate><title>Human assembloids reveal the consequences of CACNA1G gene variants in the thalamocortical pathway</title><author>Kim, Ji-il ; Miura, Yuki ; Li, Min-Yin ; Revah, Omer ; Selvaraj, Sridhar ; Birey, Fikri ; Meng, Xiangling ; Thete, Mayuri Vijay ; Pavlov, Sergey D. ; Andersen, Jimena ; Pașca, Anca M. ; Porteus, Matthew H. ; Huguenard, John R. ; Pașca, Sergiu P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-27af3bc3272d289ee702e91658670babd1e210337945c3bc0f8940a0f9193633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>assembloids</topic><topic>Calcium Channels, T-Type - genetics</topic><topic>Cerebral Cortex</topic><topic>disease</topic><topic>Female</topic><topic>Genetic Variation - genetics</topic><topic>Humans</topic><topic>Male</topic><topic>Neural Pathways</topic><topic>Neurons - metabolism</topic><topic>organoids</topic><topic>thalamocortical</topic><topic>thalamus</topic><topic>Thalamus - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Ji-il</creatorcontrib><creatorcontrib>Miura, Yuki</creatorcontrib><creatorcontrib>Li, Min-Yin</creatorcontrib><creatorcontrib>Revah, Omer</creatorcontrib><creatorcontrib>Selvaraj, Sridhar</creatorcontrib><creatorcontrib>Birey, Fikri</creatorcontrib><creatorcontrib>Meng, Xiangling</creatorcontrib><creatorcontrib>Thete, Mayuri Vijay</creatorcontrib><creatorcontrib>Pavlov, Sergey D.</creatorcontrib><creatorcontrib>Andersen, Jimena</creatorcontrib><creatorcontrib>Pașca, Anca M.</creatorcontrib><creatorcontrib>Porteus, Matthew H.</creatorcontrib><creatorcontrib>Huguenard, John R.</creatorcontrib><creatorcontrib>Pașca, Sergiu P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Ji-il</au><au>Miura, Yuki</au><au>Li, Min-Yin</au><au>Revah, Omer</au><au>Selvaraj, Sridhar</au><au>Birey, Fikri</au><au>Meng, Xiangling</au><au>Thete, Mayuri Vijay</au><au>Pavlov, Sergey D.</au><au>Andersen, Jimena</au><au>Pașca, Anca M.</au><au>Porteus, Matthew H.</au><au>Huguenard, John R.</au><au>Pașca, Sergiu P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Human assembloids reveal the consequences of CACNA1G gene variants in the thalamocortical pathway</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2024-12-18</date><risdate>2024</risdate><volume>112</volume><issue>24</issue><spage>4048</spage><epage>4059.e7</epage><pages>4048-4059.e7</pages><issn>0896-6273</issn><issn>1097-4199</issn><eissn>1097-4199</eissn><abstract>Abnormalities in thalamocortical crosstalk can lead to neuropsychiatric disorders. Variants in CACNA1G, which encodes the α1G subunit of the thalamus-enriched T-type calcium channel, are associated with absence seizures, intellectual disability, and schizophrenia, but the cellular and circuit consequences of these genetic variants in humans remain unknown. Here, we developed a human assembloid model of the thalamocortical pathway to dissect the contribution of genetic variants in T-type calcium channels. We discovered that the M1531V CACNA1G variant associated with seizures led to changes in T-type currents in thalamic neurons, as well as correlated hyperactivity of thalamic and cortical neurons in assembloids. By contrast, CACNA1G loss, which has been associated with risk of schizophrenia, resulted in abnormal thalamocortical connectivity that was related to both increased spontaneous thalamic activity and aberrant axonal projections. These results illustrate the utility of multi-cellular systems for interrogating human genetic disease risk variants at both cellular and circuit level. •Generation of hiPS cell-derived diencephalic organoids containing thalamic neurons•Integration of cortical and diencephalic organoids to form thalamocortical assembloids•M1531V CACNA1G variant alters T-type currents, leading to hyperactivity in assembloids•Loss of CACNA1G changes thalamocortical connectivity and increases thalamic activity Kim et al. developed a human assembloid to investigate the effects of calcium channel function on the thalamocortical pathway. The M1531V CACNA1G variant altered T-type currents and induced hyperactivity, while CACNA1G loss changed connectivity and thalamic activity. This highlights the utility of assembloids in identifying circuit-level disease phenotypes.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>39419023</pmid><doi>10.1016/j.neuron.2024.09.020</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0896-6273
ispartof Neuron (Cambridge, Mass.), 2024-12, Vol.112 (24), p.4048-4059.e7
issn 0896-6273
1097-4199
1097-4199
language eng
recordid cdi_proquest_miscellaneous_3117993878
source MEDLINE; Elsevier ScienceDirect Journals
subjects assembloids
Calcium Channels, T-Type - genetics
Cerebral Cortex
disease
Female
Genetic Variation - genetics
Humans
Male
Neural Pathways
Neurons - metabolism
organoids
thalamocortical
thalamus
Thalamus - metabolism
title Human assembloids reveal the consequences of CACNA1G gene variants in the thalamocortical pathway
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T10%3A40%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Human%20assembloids%20reveal%20the%20consequences%20of%20CACNA1G%20gene%20variants%20in%20the%20thalamocortical%20pathway&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Kim,%20Ji-il&rft.date=2024-12-18&rft.volume=112&rft.issue=24&rft.spage=4048&rft.epage=4059.e7&rft.pages=4048-4059.e7&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2024.09.020&rft_dat=%3Cproquest_cross%3E3117993878%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3117993878&rft_id=info:pmid/39419023&rft_els_id=S0896627324006925&rfr_iscdi=true