Face Recognition Using Principal Component Analysis Applied to an Egyptian Face Database

Although face recognition is highly race-oriented, to-date there is no Egyptian database of face images for research purposes. This paper serves two purposes. First we present the efforts undertaken to build the first Egyptian face database (over 1100 images). Second we present a variant algorithm b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ragab, Mohammad E., Darwish, Ahmed M., Abed, Ehsan M., Shaheen, Samir I.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 549
container_issue
container_start_page 540
container_title
container_volume
creator Ragab, Mohammad E.
Darwish, Ahmed M.
Abed, Ehsan M.
Shaheen, Samir I.
description Although face recognition is highly race-oriented, to-date there is no Egyptian database of face images for research purposes. This paper serves two purposes. First we present the efforts undertaken to build the first Egyptian face database (over 1100 images). Second we present a variant algorithm based on principal component analysis (PCA) but adjusted to Egyptian environment. In order to conduct face recognition research under realistic circumstances, no restrictions have been imposed on the volunteers (eyeglasses, moustaches, beards, and veils (hijab)). Furthermore, photos, for each volunteer, were taken during two sessions that are two months apart (March and May). Meanwhile, multiple light sources have been used. More than 1000 experiments have been carried out to evaluate the approach under different conditions. A new pentagon-shaped mask has been devised, which has proven suitable to enhance the recognition rate.
doi_str_mv 10.1007/978-3-540-48765-4_58
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_31179659</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>31179659</sourcerecordid><originalsourceid>FETCH-LOGICAL-p258t-1b8dacf8cc4060534821a5c81e0acad8de250bae7de334193d1366605bbba1ec3</originalsourceid><addsrcrecordid>eNo9UU1LAzEQjV9gqf0HHnIQb9Fks9nNHkttVSgoYsFbmM2mS3SbxM320H9v-oEDwwxvHsO8NwjdMvrAKC0fq1ISTkROSS7LQpBcCXmGJgnmCTxg-TkasYIxwnleXfzPioKWRXmJRpTTjFRlzq_RJMZvmoJnIuUIfS1AG_xhtG-dHax3eBWta_F7b522ATo885vgnXEDnjrodtFGPA2hs6bBg8fg8LzdhcGm5rDqCQaoIZobdLWGLprJqY7RajH_nL2Q5dvz62y6JCETciCslg3otdQ63UsFz2XGQGjJDAUNjWxMOrQGUzYmiWMVbxgvkjBR1zUwo_kY3R_3ht7_bk0c1MZGbboOnPHbqDhjZVWIKhHvTkSIGrp1D0lgVKG3G-h3ismMZ3xPy460mCauNb2qvf-JilG1f4dK3iqukrvqYL3av4P_AY65eEo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>31179659</pqid></control><display><type>conference_proceeding</type><title>Face Recognition Using Principal Component Analysis Applied to an Egyptian Face Database</title><source>Springer Books</source><creator>Ragab, Mohammad E. ; Darwish, Ahmed M. ; Abed, Ehsan M. ; Shaheen, Samir I.</creator><contributor>El-Dessouki, Ayman ; Ali, Moonis ; Imam, Ibrahim ; Kodratoff, Yves</contributor><creatorcontrib>Ragab, Mohammad E. ; Darwish, Ahmed M. ; Abed, Ehsan M. ; Shaheen, Samir I. ; El-Dessouki, Ayman ; Ali, Moonis ; Imam, Ibrahim ; Kodratoff, Yves</creatorcontrib><description>Although face recognition is highly race-oriented, to-date there is no Egyptian database of face images for research purposes. This paper serves two purposes. First we present the efforts undertaken to build the first Egyptian face database (over 1100 images). Second we present a variant algorithm based on principal component analysis (PCA) but adjusted to Egyptian environment. In order to conduct face recognition research under realistic circumstances, no restrictions have been imposed on the volunteers (eyeglasses, moustaches, beards, and veils (hijab)). Furthermore, photos, for each volunteer, were taken during two sessions that are two months apart (March and May). Meanwhile, multiple light sources have been used. More than 1000 experiments have been carried out to evaluate the approach under different conditions. A new pentagon-shaped mask has been devised, which has proven suitable to enhance the recognition rate.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540660767</identifier><identifier>ISBN: 3540660763</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540487654</identifier><identifier>EISBN: 3540487654</identifier><identifier>DOI: 10.1007/978-3-540-48765-4_58</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Face Image ; Face Recognition ; Gray Level ; Mahalanobis Distance ; Pattern recognition. Digital image processing. Computational geometry ; Recognition Rate</subject><ispartof>Lecture notes in computer science, 1999, p.540-549</ispartof><rights>Springer-Verlag Berlin Heidelberg 1999</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-48765-4_58$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-48765-4_58$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,776,777,781,786,787,790,4036,4037,27906,38236,41423,42492</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1823239$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>El-Dessouki, Ayman</contributor><contributor>Ali, Moonis</contributor><contributor>Imam, Ibrahim</contributor><contributor>Kodratoff, Yves</contributor><creatorcontrib>Ragab, Mohammad E.</creatorcontrib><creatorcontrib>Darwish, Ahmed M.</creatorcontrib><creatorcontrib>Abed, Ehsan M.</creatorcontrib><creatorcontrib>Shaheen, Samir I.</creatorcontrib><title>Face Recognition Using Principal Component Analysis Applied to an Egyptian Face Database</title><title>Lecture notes in computer science</title><description>Although face recognition is highly race-oriented, to-date there is no Egyptian database of face images for research purposes. This paper serves two purposes. First we present the efforts undertaken to build the first Egyptian face database (over 1100 images). Second we present a variant algorithm based on principal component analysis (PCA) but adjusted to Egyptian environment. In order to conduct face recognition research under realistic circumstances, no restrictions have been imposed on the volunteers (eyeglasses, moustaches, beards, and veils (hijab)). Furthermore, photos, for each volunteer, were taken during two sessions that are two months apart (March and May). Meanwhile, multiple light sources have been used. More than 1000 experiments have been carried out to evaluate the approach under different conditions. A new pentagon-shaped mask has been devised, which has proven suitable to enhance the recognition rate.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Face Image</subject><subject>Face Recognition</subject><subject>Gray Level</subject><subject>Mahalanobis Distance</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Recognition Rate</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540660767</isbn><isbn>3540660763</isbn><isbn>9783540487654</isbn><isbn>3540487654</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1999</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNo9UU1LAzEQjV9gqf0HHnIQb9Fks9nNHkttVSgoYsFbmM2mS3SbxM320H9v-oEDwwxvHsO8NwjdMvrAKC0fq1ISTkROSS7LQpBcCXmGJgnmCTxg-TkasYIxwnleXfzPioKWRXmJRpTTjFRlzq_RJMZvmoJnIuUIfS1AG_xhtG-dHax3eBWta_F7b522ATo885vgnXEDnjrodtFGPA2hs6bBg8fg8LzdhcGm5rDqCQaoIZobdLWGLprJqY7RajH_nL2Q5dvz62y6JCETciCslg3otdQ63UsFz2XGQGjJDAUNjWxMOrQGUzYmiWMVbxgvkjBR1zUwo_kY3R_3ht7_bk0c1MZGbboOnPHbqDhjZVWIKhHvTkSIGrp1D0lgVKG3G-h3ismMZ3xPy460mCauNb2qvf-JilG1f4dK3iqukrvqYL3av4P_AY65eEo</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>Ragab, Mohammad E.</creator><creator>Darwish, Ahmed M.</creator><creator>Abed, Ehsan M.</creator><creator>Shaheen, Samir I.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>1999</creationdate><title>Face Recognition Using Principal Component Analysis Applied to an Egyptian Face Database</title><author>Ragab, Mohammad E. ; Darwish, Ahmed M. ; Abed, Ehsan M. ; Shaheen, Samir I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p258t-1b8dacf8cc4060534821a5c81e0acad8de250bae7de334193d1366605bbba1ec3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Face Image</topic><topic>Face Recognition</topic><topic>Gray Level</topic><topic>Mahalanobis Distance</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Recognition Rate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ragab, Mohammad E.</creatorcontrib><creatorcontrib>Darwish, Ahmed M.</creatorcontrib><creatorcontrib>Abed, Ehsan M.</creatorcontrib><creatorcontrib>Shaheen, Samir I.</creatorcontrib><collection>Pascal-Francis</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ragab, Mohammad E.</au><au>Darwish, Ahmed M.</au><au>Abed, Ehsan M.</au><au>Shaheen, Samir I.</au><au>El-Dessouki, Ayman</au><au>Ali, Moonis</au><au>Imam, Ibrahim</au><au>Kodratoff, Yves</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Face Recognition Using Principal Component Analysis Applied to an Egyptian Face Database</atitle><btitle>Lecture notes in computer science</btitle><date>1999</date><risdate>1999</risdate><spage>540</spage><epage>549</epage><pages>540-549</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540660767</isbn><isbn>3540660763</isbn><eisbn>9783540487654</eisbn><eisbn>3540487654</eisbn><abstract>Although face recognition is highly race-oriented, to-date there is no Egyptian database of face images for research purposes. This paper serves two purposes. First we present the efforts undertaken to build the first Egyptian face database (over 1100 images). Second we present a variant algorithm based on principal component analysis (PCA) but adjusted to Egyptian environment. In order to conduct face recognition research under realistic circumstances, no restrictions have been imposed on the volunteers (eyeglasses, moustaches, beards, and veils (hijab)). Furthermore, photos, for each volunteer, were taken during two sessions that are two months apart (March and May). Meanwhile, multiple light sources have been used. More than 1000 experiments have been carried out to evaluate the approach under different conditions. A new pentagon-shaped mask has been devised, which has proven suitable to enhance the recognition rate.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/978-3-540-48765-4_58</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 1999, p.540-549
issn 0302-9743
1611-3349
language eng
recordid cdi_proquest_miscellaneous_31179659
source Springer Books
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Exact sciences and technology
Face Image
Face Recognition
Gray Level
Mahalanobis Distance
Pattern recognition. Digital image processing. Computational geometry
Recognition Rate
title Face Recognition Using Principal Component Analysis Applied to an Egyptian Face Database
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T22%3A01%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Face%20Recognition%20Using%20Principal%20Component%20Analysis%20Applied%20to%20an%20Egyptian%20Face%20Database&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Ragab,%20Mohammad%20E.&rft.date=1999&rft.spage=540&rft.epage=549&rft.pages=540-549&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540660767&rft.isbn_list=3540660763&rft_id=info:doi/10.1007/978-3-540-48765-4_58&rft_dat=%3Cproquest_pasca%3E31179659%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540487654&rft.eisbn_list=3540487654&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=31179659&rft_id=info:pmid/&rfr_iscdi=true