Effect of hydrodynamic multiplicity on trickle bed reactor performance
Multiple hydrodynamic states in trickle bed reactors have been the subject of numerous hydrodynamic investigations. The extent of variation in the hydrodynamic parameters (like holdup and pressure drop) is large and this variation can be expected to have a significant impact on the conversion in a r...
Gespeichert in:
Veröffentlicht in: | AIChE journal 2008, Vol.54 (1), p.249-257 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 257 |
---|---|
container_issue | 1 |
container_start_page | 249 |
container_title | AIChE journal |
container_volume | 54 |
creator | van der Merwe, Werner Nicol, Willie Al-Dahhan, Muthanna H |
description | Multiple hydrodynamic states in trickle bed reactors have been the subject of numerous hydrodynamic investigations. The extent of variation in the hydrodynamic parameters (like holdup and pressure drop) is large and this variation can be expected to have a significant impact on the conversion in a reaction system. This study presents reaction data for α-methyl styrene hydrogenation in a trickle bed reactor over a range of conditions that include gas and liquid limitations. It is seen that liquid flow rate variation induced hysteresis has a large impact on the conversion. For gas-limited reactions, the upper branch of the pressure drop hysteresis loop has a higher conversion than the lower branch at the same linear fluid velocities and catalyst weight, while for liquid-limited reactions the lower branch has a higher conversion than the upper branch (the difference in productivity being up to 20%). These trends cannot be explained by differences in wetting efficiency. Instead, it is proposed that for this system the gas-liquid mass transfer rate is the limiting step in gas-limited reactions, while the liquid-solid mass transfer rate is the limiting step in liquid-limited reactions. © 2007 American Institute of Chemical Engineers AIChE J, 2008 |
doi_str_mv | 10.1002/aic.11360 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_31177060</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1398594201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4500-4b299ce188610a94280933fad92a9981909c8fa57ee2c279866bc5db28a9e40e3</originalsourceid><addsrcrecordid>eNqF0F1rFDEUBuAgCq7VC3-Bg6DgxbTnZDL5uCxLv6CsFK1ehmwm0bQzk20yi86_b3SqgiBehYTnvOS8hLxEOEQAemSCPURsODwiK2yZqFsF7WOyAgCsywM-Jc9yvik3KiRdkdMT752dquirr3OXYjePZgi2Gvb9FHZ9sGGaqzhWUwr2tnfV1nVVcsZOMVU7l3xMgxmte06eeNNn9-LhPCDXpycf1-f15fuzi_XxZW1ZC1CzLVXKOpSSIxjFqATVNN50ihqlJCpQVnrTCueopUJJzre27bZUGuUYuOaAvF1ydyne7V2e9BCydX1vRhf3WTeIQgCH_0KKICkDUeDrv-BN3KexLKFRKQYMFS3o3YJsijkn5_UuhcGkWSPoH73r0rv-2Xuxbx4CTbam96n0E_KfAaWQc8aKO1rct9C7-d-B-vhi_Su5XiZCntz33xMm3WouGtHqz5szvRFXm0-CXmle_KvFexO1-ZLKL64_UMAGQDYKy_L3-_WnXQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>199404192</pqid></control><display><type>article</type><title>Effect of hydrodynamic multiplicity on trickle bed reactor performance</title><source>Wiley Online Library All Journals</source><creator>van der Merwe, Werner ; Nicol, Willie ; Al-Dahhan, Muthanna H</creator><creatorcontrib>van der Merwe, Werner ; Nicol, Willie ; Al-Dahhan, Muthanna H</creatorcontrib><description>Multiple hydrodynamic states in trickle bed reactors have been the subject of numerous hydrodynamic investigations. The extent of variation in the hydrodynamic parameters (like holdup and pressure drop) is large and this variation can be expected to have a significant impact on the conversion in a reaction system. This study presents reaction data for α-methyl styrene hydrogenation in a trickle bed reactor over a range of conditions that include gas and liquid limitations. It is seen that liquid flow rate variation induced hysteresis has a large impact on the conversion. For gas-limited reactions, the upper branch of the pressure drop hysteresis loop has a higher conversion than the lower branch at the same linear fluid velocities and catalyst weight, while for liquid-limited reactions the lower branch has a higher conversion than the upper branch (the difference in productivity being up to 20%). These trends cannot be explained by differences in wetting efficiency. Instead, it is proposed that for this system the gas-liquid mass transfer rate is the limiting step in gas-limited reactions, while the liquid-solid mass transfer rate is the limiting step in liquid-limited reactions. © 2007 American Institute of Chemical Engineers AIChE J, 2008</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.11360</identifier><identifier>CODEN: AICEAC</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Catalysis ; Catalysts ; Catalytic reactions ; Chemical engineering ; Chemical reactions ; Chemistry ; Exact sciences and technology ; Fluid dynamics ; Fluidized bed reactors ; General and physical chemistry ; Heat and mass transfer. Packings, plates ; Hydrodynamics of contact apparatus ; mass transfer ; multi-phase flow ; Reactors ; Styrene ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry ; trickle bed reactors</subject><ispartof>AIChE journal, 2008, Vol.54 (1), p.249-257</ispartof><rights>Copyright © 2007 American Institute of Chemical Engineers (AIChE)</rights><rights>2008 INIST-CNRS</rights><rights>Copyright American Institute of Chemical Engineers Jan 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4500-4b299ce188610a94280933fad92a9981909c8fa57ee2c279866bc5db28a9e40e3</citedby><cites>FETCH-LOGICAL-c4500-4b299ce188610a94280933fad92a9981909c8fa57ee2c279866bc5db28a9e40e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.11360$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.11360$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,4022,27921,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19916644$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>van der Merwe, Werner</creatorcontrib><creatorcontrib>Nicol, Willie</creatorcontrib><creatorcontrib>Al-Dahhan, Muthanna H</creatorcontrib><title>Effect of hydrodynamic multiplicity on trickle bed reactor performance</title><title>AIChE journal</title><addtitle>AIChE J</addtitle><description>Multiple hydrodynamic states in trickle bed reactors have been the subject of numerous hydrodynamic investigations. The extent of variation in the hydrodynamic parameters (like holdup and pressure drop) is large and this variation can be expected to have a significant impact on the conversion in a reaction system. This study presents reaction data for α-methyl styrene hydrogenation in a trickle bed reactor over a range of conditions that include gas and liquid limitations. It is seen that liquid flow rate variation induced hysteresis has a large impact on the conversion. For gas-limited reactions, the upper branch of the pressure drop hysteresis loop has a higher conversion than the lower branch at the same linear fluid velocities and catalyst weight, while for liquid-limited reactions the lower branch has a higher conversion than the upper branch (the difference in productivity being up to 20%). These trends cannot be explained by differences in wetting efficiency. Instead, it is proposed that for this system the gas-liquid mass transfer rate is the limiting step in gas-limited reactions, while the liquid-solid mass transfer rate is the limiting step in liquid-limited reactions. © 2007 American Institute of Chemical Engineers AIChE J, 2008</description><subject>Applied sciences</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Catalytic reactions</subject><subject>Chemical engineering</subject><subject>Chemical reactions</subject><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluidized bed reactors</subject><subject>General and physical chemistry</subject><subject>Heat and mass transfer. Packings, plates</subject><subject>Hydrodynamics of contact apparatus</subject><subject>mass transfer</subject><subject>multi-phase flow</subject><subject>Reactors</subject><subject>Styrene</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><subject>trickle bed reactors</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqF0F1rFDEUBuAgCq7VC3-Bg6DgxbTnZDL5uCxLv6CsFK1ehmwm0bQzk20yi86_b3SqgiBehYTnvOS8hLxEOEQAemSCPURsODwiK2yZqFsF7WOyAgCsywM-Jc9yvik3KiRdkdMT752dquirr3OXYjePZgi2Gvb9FHZ9sGGaqzhWUwr2tnfV1nVVcsZOMVU7l3xMgxmte06eeNNn9-LhPCDXpycf1-f15fuzi_XxZW1ZC1CzLVXKOpSSIxjFqATVNN50ihqlJCpQVnrTCueopUJJzre27bZUGuUYuOaAvF1ydyne7V2e9BCydX1vRhf3WTeIQgCH_0KKICkDUeDrv-BN3KexLKFRKQYMFS3o3YJsijkn5_UuhcGkWSPoH73r0rv-2Xuxbx4CTbam96n0E_KfAaWQc8aKO1rct9C7-d-B-vhi_Su5XiZCntz33xMm3WouGtHqz5szvRFXm0-CXmle_KvFexO1-ZLKL64_UMAGQDYKy_L3-_WnXQ</recordid><startdate>2008</startdate><enddate>2008</enddate><creator>van der Merwe, Werner</creator><creator>Nicol, Willie</creator><creator>Al-Dahhan, Muthanna H</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services</general><general>American Institute of Chemical Engineers</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope><scope>7QH</scope></search><sort><creationdate>2008</creationdate><title>Effect of hydrodynamic multiplicity on trickle bed reactor performance</title><author>van der Merwe, Werner ; Nicol, Willie ; Al-Dahhan, Muthanna H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4500-4b299ce188610a94280933fad92a9981909c8fa57ee2c279866bc5db28a9e40e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Catalytic reactions</topic><topic>Chemical engineering</topic><topic>Chemical reactions</topic><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluidized bed reactors</topic><topic>General and physical chemistry</topic><topic>Heat and mass transfer. Packings, plates</topic><topic>Hydrodynamics of contact apparatus</topic><topic>mass transfer</topic><topic>multi-phase flow</topic><topic>Reactors</topic><topic>Styrene</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><topic>trickle bed reactors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van der Merwe, Werner</creatorcontrib><creatorcontrib>Nicol, Willie</creatorcontrib><creatorcontrib>Al-Dahhan, Muthanna H</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Aqualine</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van der Merwe, Werner</au><au>Nicol, Willie</au><au>Al-Dahhan, Muthanna H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of hydrodynamic multiplicity on trickle bed reactor performance</atitle><jtitle>AIChE journal</jtitle><addtitle>AIChE J</addtitle><date>2008</date><risdate>2008</risdate><volume>54</volume><issue>1</issue><spage>249</spage><epage>257</epage><pages>249-257</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><coden>AICEAC</coden><abstract>Multiple hydrodynamic states in trickle bed reactors have been the subject of numerous hydrodynamic investigations. The extent of variation in the hydrodynamic parameters (like holdup and pressure drop) is large and this variation can be expected to have a significant impact on the conversion in a reaction system. This study presents reaction data for α-methyl styrene hydrogenation in a trickle bed reactor over a range of conditions that include gas and liquid limitations. It is seen that liquid flow rate variation induced hysteresis has a large impact on the conversion. For gas-limited reactions, the upper branch of the pressure drop hysteresis loop has a higher conversion than the lower branch at the same linear fluid velocities and catalyst weight, while for liquid-limited reactions the lower branch has a higher conversion than the upper branch (the difference in productivity being up to 20%). These trends cannot be explained by differences in wetting efficiency. Instead, it is proposed that for this system the gas-liquid mass transfer rate is the limiting step in gas-limited reactions, while the liquid-solid mass transfer rate is the limiting step in liquid-limited reactions. © 2007 American Institute of Chemical Engineers AIChE J, 2008</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/aic.11360</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1541 |
ispartof | AIChE journal, 2008, Vol.54 (1), p.249-257 |
issn | 0001-1541 1547-5905 |
language | eng |
recordid | cdi_proquest_miscellaneous_31177060 |
source | Wiley Online Library All Journals |
subjects | Applied sciences Catalysis Catalysts Catalytic reactions Chemical engineering Chemical reactions Chemistry Exact sciences and technology Fluid dynamics Fluidized bed reactors General and physical chemistry Heat and mass transfer. Packings, plates Hydrodynamics of contact apparatus mass transfer multi-phase flow Reactors Styrene Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry trickle bed reactors |
title | Effect of hydrodynamic multiplicity on trickle bed reactor performance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T23%3A22%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20hydrodynamic%20multiplicity%20on%20trickle%20bed%20reactor%20performance&rft.jtitle=AIChE%20journal&rft.au=van%20der%20Merwe,%20Werner&rft.date=2008&rft.volume=54&rft.issue=1&rft.spage=249&rft.epage=257&rft.pages=249-257&rft.issn=0001-1541&rft.eissn=1547-5905&rft.coden=AICEAC&rft_id=info:doi/10.1002/aic.11360&rft_dat=%3Cproquest_cross%3E1398594201%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=199404192&rft_id=info:pmid/&rfr_iscdi=true |