Effect of hydrodynamic multiplicity on trickle bed reactor performance

Multiple hydrodynamic states in trickle bed reactors have been the subject of numerous hydrodynamic investigations. The extent of variation in the hydrodynamic parameters (like holdup and pressure drop) is large and this variation can be expected to have a significant impact on the conversion in a r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIChE journal 2008, Vol.54 (1), p.249-257
Hauptverfasser: van der Merwe, Werner, Nicol, Willie, Al-Dahhan, Muthanna H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 257
container_issue 1
container_start_page 249
container_title AIChE journal
container_volume 54
creator van der Merwe, Werner
Nicol, Willie
Al-Dahhan, Muthanna H
description Multiple hydrodynamic states in trickle bed reactors have been the subject of numerous hydrodynamic investigations. The extent of variation in the hydrodynamic parameters (like holdup and pressure drop) is large and this variation can be expected to have a significant impact on the conversion in a reaction system. This study presents reaction data for α-methyl styrene hydrogenation in a trickle bed reactor over a range of conditions that include gas and liquid limitations. It is seen that liquid flow rate variation induced hysteresis has a large impact on the conversion. For gas-limited reactions, the upper branch of the pressure drop hysteresis loop has a higher conversion than the lower branch at the same linear fluid velocities and catalyst weight, while for liquid-limited reactions the lower branch has a higher conversion than the upper branch (the difference in productivity being up to 20%). These trends cannot be explained by differences in wetting efficiency. Instead, it is proposed that for this system the gas-liquid mass transfer rate is the limiting step in gas-limited reactions, while the liquid-solid mass transfer rate is the limiting step in liquid-limited reactions. © 2007 American Institute of Chemical Engineers AIChE J, 2008
doi_str_mv 10.1002/aic.11360
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_31177060</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1398594201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4500-4b299ce188610a94280933fad92a9981909c8fa57ee2c279866bc5db28a9e40e3</originalsourceid><addsrcrecordid>eNqF0F1rFDEUBuAgCq7VC3-Bg6DgxbTnZDL5uCxLv6CsFK1ehmwm0bQzk20yi86_b3SqgiBehYTnvOS8hLxEOEQAemSCPURsODwiK2yZqFsF7WOyAgCsywM-Jc9yvik3KiRdkdMT752dquirr3OXYjePZgi2Gvb9FHZ9sGGaqzhWUwr2tnfV1nVVcsZOMVU7l3xMgxmte06eeNNn9-LhPCDXpycf1-f15fuzi_XxZW1ZC1CzLVXKOpSSIxjFqATVNN50ihqlJCpQVnrTCueopUJJzre27bZUGuUYuOaAvF1ydyne7V2e9BCydX1vRhf3WTeIQgCH_0KKICkDUeDrv-BN3KexLKFRKQYMFS3o3YJsijkn5_UuhcGkWSPoH73r0rv-2Xuxbx4CTbam96n0E_KfAaWQc8aKO1rct9C7-d-B-vhi_Su5XiZCntz33xMm3WouGtHqz5szvRFXm0-CXmle_KvFexO1-ZLKL64_UMAGQDYKy_L3-_WnXQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>199404192</pqid></control><display><type>article</type><title>Effect of hydrodynamic multiplicity on trickle bed reactor performance</title><source>Wiley Online Library All Journals</source><creator>van der Merwe, Werner ; Nicol, Willie ; Al-Dahhan, Muthanna H</creator><creatorcontrib>van der Merwe, Werner ; Nicol, Willie ; Al-Dahhan, Muthanna H</creatorcontrib><description>Multiple hydrodynamic states in trickle bed reactors have been the subject of numerous hydrodynamic investigations. The extent of variation in the hydrodynamic parameters (like holdup and pressure drop) is large and this variation can be expected to have a significant impact on the conversion in a reaction system. This study presents reaction data for α-methyl styrene hydrogenation in a trickle bed reactor over a range of conditions that include gas and liquid limitations. It is seen that liquid flow rate variation induced hysteresis has a large impact on the conversion. For gas-limited reactions, the upper branch of the pressure drop hysteresis loop has a higher conversion than the lower branch at the same linear fluid velocities and catalyst weight, while for liquid-limited reactions the lower branch has a higher conversion than the upper branch (the difference in productivity being up to 20%). These trends cannot be explained by differences in wetting efficiency. Instead, it is proposed that for this system the gas-liquid mass transfer rate is the limiting step in gas-limited reactions, while the liquid-solid mass transfer rate is the limiting step in liquid-limited reactions. © 2007 American Institute of Chemical Engineers AIChE J, 2008</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.11360</identifier><identifier>CODEN: AICEAC</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Catalysis ; Catalysts ; Catalytic reactions ; Chemical engineering ; Chemical reactions ; Chemistry ; Exact sciences and technology ; Fluid dynamics ; Fluidized bed reactors ; General and physical chemistry ; Heat and mass transfer. Packings, plates ; Hydrodynamics of contact apparatus ; mass transfer ; multi-phase flow ; Reactors ; Styrene ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry ; trickle bed reactors</subject><ispartof>AIChE journal, 2008, Vol.54 (1), p.249-257</ispartof><rights>Copyright © 2007 American Institute of Chemical Engineers (AIChE)</rights><rights>2008 INIST-CNRS</rights><rights>Copyright American Institute of Chemical Engineers Jan 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4500-4b299ce188610a94280933fad92a9981909c8fa57ee2c279866bc5db28a9e40e3</citedby><cites>FETCH-LOGICAL-c4500-4b299ce188610a94280933fad92a9981909c8fa57ee2c279866bc5db28a9e40e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.11360$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.11360$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,4022,27921,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19916644$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>van der Merwe, Werner</creatorcontrib><creatorcontrib>Nicol, Willie</creatorcontrib><creatorcontrib>Al-Dahhan, Muthanna H</creatorcontrib><title>Effect of hydrodynamic multiplicity on trickle bed reactor performance</title><title>AIChE journal</title><addtitle>AIChE J</addtitle><description>Multiple hydrodynamic states in trickle bed reactors have been the subject of numerous hydrodynamic investigations. The extent of variation in the hydrodynamic parameters (like holdup and pressure drop) is large and this variation can be expected to have a significant impact on the conversion in a reaction system. This study presents reaction data for α-methyl styrene hydrogenation in a trickle bed reactor over a range of conditions that include gas and liquid limitations. It is seen that liquid flow rate variation induced hysteresis has a large impact on the conversion. For gas-limited reactions, the upper branch of the pressure drop hysteresis loop has a higher conversion than the lower branch at the same linear fluid velocities and catalyst weight, while for liquid-limited reactions the lower branch has a higher conversion than the upper branch (the difference in productivity being up to 20%). These trends cannot be explained by differences in wetting efficiency. Instead, it is proposed that for this system the gas-liquid mass transfer rate is the limiting step in gas-limited reactions, while the liquid-solid mass transfer rate is the limiting step in liquid-limited reactions. © 2007 American Institute of Chemical Engineers AIChE J, 2008</description><subject>Applied sciences</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Catalytic reactions</subject><subject>Chemical engineering</subject><subject>Chemical reactions</subject><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluidized bed reactors</subject><subject>General and physical chemistry</subject><subject>Heat and mass transfer. Packings, plates</subject><subject>Hydrodynamics of contact apparatus</subject><subject>mass transfer</subject><subject>multi-phase flow</subject><subject>Reactors</subject><subject>Styrene</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><subject>trickle bed reactors</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqF0F1rFDEUBuAgCq7VC3-Bg6DgxbTnZDL5uCxLv6CsFK1ehmwm0bQzk20yi86_b3SqgiBehYTnvOS8hLxEOEQAemSCPURsODwiK2yZqFsF7WOyAgCsywM-Jc9yvik3KiRdkdMT752dquirr3OXYjePZgi2Gvb9FHZ9sGGaqzhWUwr2tnfV1nVVcsZOMVU7l3xMgxmte06eeNNn9-LhPCDXpycf1-f15fuzi_XxZW1ZC1CzLVXKOpSSIxjFqATVNN50ihqlJCpQVnrTCueopUJJzre27bZUGuUYuOaAvF1ydyne7V2e9BCydX1vRhf3WTeIQgCH_0KKICkDUeDrv-BN3KexLKFRKQYMFS3o3YJsijkn5_UuhcGkWSPoH73r0rv-2Xuxbx4CTbam96n0E_KfAaWQc8aKO1rct9C7-d-B-vhi_Su5XiZCntz33xMm3WouGtHqz5szvRFXm0-CXmle_KvFexO1-ZLKL64_UMAGQDYKy_L3-_WnXQ</recordid><startdate>2008</startdate><enddate>2008</enddate><creator>van der Merwe, Werner</creator><creator>Nicol, Willie</creator><creator>Al-Dahhan, Muthanna H</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services</general><general>American Institute of Chemical Engineers</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope><scope>7QH</scope></search><sort><creationdate>2008</creationdate><title>Effect of hydrodynamic multiplicity on trickle bed reactor performance</title><author>van der Merwe, Werner ; Nicol, Willie ; Al-Dahhan, Muthanna H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4500-4b299ce188610a94280933fad92a9981909c8fa57ee2c279866bc5db28a9e40e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Catalytic reactions</topic><topic>Chemical engineering</topic><topic>Chemical reactions</topic><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluidized bed reactors</topic><topic>General and physical chemistry</topic><topic>Heat and mass transfer. Packings, plates</topic><topic>Hydrodynamics of contact apparatus</topic><topic>mass transfer</topic><topic>multi-phase flow</topic><topic>Reactors</topic><topic>Styrene</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><topic>trickle bed reactors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van der Merwe, Werner</creatorcontrib><creatorcontrib>Nicol, Willie</creatorcontrib><creatorcontrib>Al-Dahhan, Muthanna H</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Aqualine</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van der Merwe, Werner</au><au>Nicol, Willie</au><au>Al-Dahhan, Muthanna H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of hydrodynamic multiplicity on trickle bed reactor performance</atitle><jtitle>AIChE journal</jtitle><addtitle>AIChE J</addtitle><date>2008</date><risdate>2008</risdate><volume>54</volume><issue>1</issue><spage>249</spage><epage>257</epage><pages>249-257</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><coden>AICEAC</coden><abstract>Multiple hydrodynamic states in trickle bed reactors have been the subject of numerous hydrodynamic investigations. The extent of variation in the hydrodynamic parameters (like holdup and pressure drop) is large and this variation can be expected to have a significant impact on the conversion in a reaction system. This study presents reaction data for α-methyl styrene hydrogenation in a trickle bed reactor over a range of conditions that include gas and liquid limitations. It is seen that liquid flow rate variation induced hysteresis has a large impact on the conversion. For gas-limited reactions, the upper branch of the pressure drop hysteresis loop has a higher conversion than the lower branch at the same linear fluid velocities and catalyst weight, while for liquid-limited reactions the lower branch has a higher conversion than the upper branch (the difference in productivity being up to 20%). These trends cannot be explained by differences in wetting efficiency. Instead, it is proposed that for this system the gas-liquid mass transfer rate is the limiting step in gas-limited reactions, while the liquid-solid mass transfer rate is the limiting step in liquid-limited reactions. © 2007 American Institute of Chemical Engineers AIChE J, 2008</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/aic.11360</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-1541
ispartof AIChE journal, 2008, Vol.54 (1), p.249-257
issn 0001-1541
1547-5905
language eng
recordid cdi_proquest_miscellaneous_31177060
source Wiley Online Library All Journals
subjects Applied sciences
Catalysis
Catalysts
Catalytic reactions
Chemical engineering
Chemical reactions
Chemistry
Exact sciences and technology
Fluid dynamics
Fluidized bed reactors
General and physical chemistry
Heat and mass transfer. Packings, plates
Hydrodynamics of contact apparatus
mass transfer
multi-phase flow
Reactors
Styrene
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
trickle bed reactors
title Effect of hydrodynamic multiplicity on trickle bed reactor performance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T23%3A22%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20hydrodynamic%20multiplicity%20on%20trickle%20bed%20reactor%20performance&rft.jtitle=AIChE%20journal&rft.au=van%20der%20Merwe,%20Werner&rft.date=2008&rft.volume=54&rft.issue=1&rft.spage=249&rft.epage=257&rft.pages=249-257&rft.issn=0001-1541&rft.eissn=1547-5905&rft.coden=AICEAC&rft_id=info:doi/10.1002/aic.11360&rft_dat=%3Cproquest_cross%3E1398594201%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=199404192&rft_id=info:pmid/&rfr_iscdi=true