Mpox outbreak: Time series analysis with multifractal and deep learning network
This article presents an overview of an mpox epidemiological situation in the most affected regions—Africa, Americas, and Europe—tailoring fractal interpolation for pre-processing the mpox cases. This keen analysis has highlighted the irregular and fractal patterns in the trend of mpox transmission....
Gespeichert in:
Veröffentlicht in: | Chaos (Woodbury, N.Y.) N.Y.), 2024-10, Vol.34 (10) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | |
container_title | Chaos (Woodbury, N.Y.) |
container_volume | 34 |
creator | Priyanka, T. M. C. Gowrisankar, A. Banerjee, Santo |
description | This article presents an overview of an mpox epidemiological situation in the most affected regions—Africa, Americas, and Europe—tailoring fractal interpolation for pre-processing the mpox cases. This keen analysis has highlighted the irregular and fractal patterns in the trend of mpox transmission. During the current scenario of public health emergency of international concern due to an mpox outbreak, an additional significance of this article is the interpretation of mpox spread in light of multifractality. The self-similar measure, namely, the multifractal measure, is utilized to explore the heterogeneity in the mpox cases. Moreover, a bidirectional long-short term memory neural network has been employed to forecast the future mpox spread to alert the outbreak as it seems to be a silent symptom for global epidemic. |
doi_str_mv | 10.1063/5.0236082 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3117616480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3117616480</sourcerecordid><originalsourceid>FETCH-LOGICAL-c238t-8f766565445ad3de0a1d4eb0be44bbd7626b4f256fbaab0866fac0f917d0fab03</originalsourceid><addsrcrecordid>eNp90MtKxTAQBuAgiveFLyABNypUJ9e27kS8geJG1yVpJxrt5ZikqG9vD-fowoWrDJmPH-YnZI_BCQMtTtUJcKGh4Ctkk0FRZrku-Op8VjJjCmCDbMX4CgCMC7VONkQpmeBabZKH-9nwSYcx2YDm7Yw--g5pxOAxUtOb9iv6SD98eqHd2CbvgqmTaadVQxvEGW3RhN73z7TH9DGEtx2y5kwbcXf5bpOnq8vHi5vs7uH69uL8Lqu5KFJWuFxrpZWUyjSiQTCskWjBopTWNrnm2krHlXbWGAuF1s7U4EqWN-CmD7FNDhe5szC8jxhT1flYY9uaHocxVoKxXDMtizk9-ENfhzFMt80VFyUoUapJHS1UHYYYA7pqFnxnwlfFoJq3XKlq2fJk95eJo-2w-ZU_tU7geAFi7ZNJfuj_SfsGPrqD_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123905395</pqid></control><display><type>article</type><title>Mpox outbreak: Time series analysis with multifractal and deep learning network</title><source>MEDLINE</source><source>AIP Journals Complete</source><creator>Priyanka, T. M. C. ; Gowrisankar, A. ; Banerjee, Santo</creator><creatorcontrib>Priyanka, T. M. C. ; Gowrisankar, A. ; Banerjee, Santo</creatorcontrib><description>This article presents an overview of an mpox epidemiological situation in the most affected regions—Africa, Americas, and Europe—tailoring fractal interpolation for pre-processing the mpox cases. This keen analysis has highlighted the irregular and fractal patterns in the trend of mpox transmission. During the current scenario of public health emergency of international concern due to an mpox outbreak, an additional significance of this article is the interpretation of mpox spread in light of multifractality. The self-similar measure, namely, the multifractal measure, is utilized to explore the heterogeneity in the mpox cases. Moreover, a bidirectional long-short term memory neural network has been employed to forecast the future mpox spread to alert the outbreak as it seems to be a silent symptom for global epidemic.</description><identifier>ISSN: 1054-1500</identifier><identifier>ISSN: 1089-7682</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/5.0236082</identifier><identifier>PMID: 39413265</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Deep Learning ; Disease Outbreaks ; Fractal analysis ; Fractals ; Heterogeneity ; Humans ; Mpox (monkeypox) ; Neural networks ; Neural Networks, Computer ; Outbreaks ; Public health ; Self-similarity ; Viral diseases</subject><ispartof>Chaos (Woodbury, N.Y.), 2024-10, Vol.34 (10)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c238t-8f766565445ad3de0a1d4eb0be44bbd7626b4f256fbaab0866fac0f917d0fab03</cites><orcidid>0000-0002-2135-695X ; 0000-0002-7473-9524 ; 0000-0002-5093-2805</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,4498,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39413265$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Priyanka, T. M. C.</creatorcontrib><creatorcontrib>Gowrisankar, A.</creatorcontrib><creatorcontrib>Banerjee, Santo</creatorcontrib><title>Mpox outbreak: Time series analysis with multifractal and deep learning network</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>This article presents an overview of an mpox epidemiological situation in the most affected regions—Africa, Americas, and Europe—tailoring fractal interpolation for pre-processing the mpox cases. This keen analysis has highlighted the irregular and fractal patterns in the trend of mpox transmission. During the current scenario of public health emergency of international concern due to an mpox outbreak, an additional significance of this article is the interpretation of mpox spread in light of multifractality. The self-similar measure, namely, the multifractal measure, is utilized to explore the heterogeneity in the mpox cases. Moreover, a bidirectional long-short term memory neural network has been employed to forecast the future mpox spread to alert the outbreak as it seems to be a silent symptom for global epidemic.</description><subject>Deep Learning</subject><subject>Disease Outbreaks</subject><subject>Fractal analysis</subject><subject>Fractals</subject><subject>Heterogeneity</subject><subject>Humans</subject><subject>Mpox (monkeypox)</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Outbreaks</subject><subject>Public health</subject><subject>Self-similarity</subject><subject>Viral diseases</subject><issn>1054-1500</issn><issn>1089-7682</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90MtKxTAQBuAgiveFLyABNypUJ9e27kS8geJG1yVpJxrt5ZikqG9vD-fowoWrDJmPH-YnZI_BCQMtTtUJcKGh4Ctkk0FRZrku-Op8VjJjCmCDbMX4CgCMC7VONkQpmeBabZKH-9nwSYcx2YDm7Yw--g5pxOAxUtOb9iv6SD98eqHd2CbvgqmTaadVQxvEGW3RhN73z7TH9DGEtx2y5kwbcXf5bpOnq8vHi5vs7uH69uL8Lqu5KFJWuFxrpZWUyjSiQTCskWjBopTWNrnm2krHlXbWGAuF1s7U4EqWN-CmD7FNDhe5szC8jxhT1flYY9uaHocxVoKxXDMtizk9-ENfhzFMt80VFyUoUapJHS1UHYYYA7pqFnxnwlfFoJq3XKlq2fJk95eJo-2w-ZU_tU7geAFi7ZNJfuj_SfsGPrqD_A</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Priyanka, T. M. C.</creator><creator>Gowrisankar, A.</creator><creator>Banerjee, Santo</creator><general>American Institute of Physics</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2135-695X</orcidid><orcidid>https://orcid.org/0000-0002-7473-9524</orcidid><orcidid>https://orcid.org/0000-0002-5093-2805</orcidid></search><sort><creationdate>202410</creationdate><title>Mpox outbreak: Time series analysis with multifractal and deep learning network</title><author>Priyanka, T. M. C. ; Gowrisankar, A. ; Banerjee, Santo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c238t-8f766565445ad3de0a1d4eb0be44bbd7626b4f256fbaab0866fac0f917d0fab03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Deep Learning</topic><topic>Disease Outbreaks</topic><topic>Fractal analysis</topic><topic>Fractals</topic><topic>Heterogeneity</topic><topic>Humans</topic><topic>Mpox (monkeypox)</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Outbreaks</topic><topic>Public health</topic><topic>Self-similarity</topic><topic>Viral diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Priyanka, T. M. C.</creatorcontrib><creatorcontrib>Gowrisankar, A.</creatorcontrib><creatorcontrib>Banerjee, Santo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Priyanka, T. M. C.</au><au>Gowrisankar, A.</au><au>Banerjee, Santo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mpox outbreak: Time series analysis with multifractal and deep learning network</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2024-10</date><risdate>2024</risdate><volume>34</volume><issue>10</issue><issn>1054-1500</issn><issn>1089-7682</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>This article presents an overview of an mpox epidemiological situation in the most affected regions—Africa, Americas, and Europe—tailoring fractal interpolation for pre-processing the mpox cases. This keen analysis has highlighted the irregular and fractal patterns in the trend of mpox transmission. During the current scenario of public health emergency of international concern due to an mpox outbreak, an additional significance of this article is the interpretation of mpox spread in light of multifractality. The self-similar measure, namely, the multifractal measure, is utilized to explore the heterogeneity in the mpox cases. Moreover, a bidirectional long-short term memory neural network has been employed to forecast the future mpox spread to alert the outbreak as it seems to be a silent symptom for global epidemic.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>39413265</pmid><doi>10.1063/5.0236082</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2135-695X</orcidid><orcidid>https://orcid.org/0000-0002-7473-9524</orcidid><orcidid>https://orcid.org/0000-0002-5093-2805</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1054-1500 |
ispartof | Chaos (Woodbury, N.Y.), 2024-10, Vol.34 (10) |
issn | 1054-1500 1089-7682 1089-7682 |
language | eng |
recordid | cdi_proquest_miscellaneous_3117616480 |
source | MEDLINE; AIP Journals Complete |
subjects | Deep Learning Disease Outbreaks Fractal analysis Fractals Heterogeneity Humans Mpox (monkeypox) Neural networks Neural Networks, Computer Outbreaks Public health Self-similarity Viral diseases |
title | Mpox outbreak: Time series analysis with multifractal and deep learning network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A59%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mpox%20outbreak:%20Time%20series%20analysis%20with%20multifractal%20and%20deep%20learning%20network&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Priyanka,%20T.%20M.%20C.&rft.date=2024-10&rft.volume=34&rft.issue=10&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/5.0236082&rft_dat=%3Cproquest_cross%3E3117616480%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3123905395&rft_id=info:pmid/39413265&rfr_iscdi=true |