Mpox outbreak: Time series analysis with multifractal and deep learning network

This article presents an overview of an mpox epidemiological situation in the most affected regions—Africa, Americas, and Europe—tailoring fractal interpolation for pre-processing the mpox cases. This keen analysis has highlighted the irregular and fractal patterns in the trend of mpox transmission....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos (Woodbury, N.Y.) N.Y.), 2024-10, Vol.34 (10)
Hauptverfasser: Priyanka, T. M. C., Gowrisankar, A., Banerjee, Santo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page
container_title Chaos (Woodbury, N.Y.)
container_volume 34
creator Priyanka, T. M. C.
Gowrisankar, A.
Banerjee, Santo
description This article presents an overview of an mpox epidemiological situation in the most affected regions—Africa, Americas, and Europe—tailoring fractal interpolation for pre-processing the mpox cases. This keen analysis has highlighted the irregular and fractal patterns in the trend of mpox transmission. During the current scenario of public health emergency of international concern due to an mpox outbreak, an additional significance of this article is the interpretation of mpox spread in light of multifractality. The self-similar measure, namely, the multifractal measure, is utilized to explore the heterogeneity in the mpox cases. Moreover, a bidirectional long-short term memory neural network has been employed to forecast the future mpox spread to alert the outbreak as it seems to be a silent symptom for global epidemic.
doi_str_mv 10.1063/5.0236082
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3117616480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3117616480</sourcerecordid><originalsourceid>FETCH-LOGICAL-c238t-8f766565445ad3de0a1d4eb0be44bbd7626b4f256fbaab0866fac0f917d0fab03</originalsourceid><addsrcrecordid>eNp90MtKxTAQBuAgiveFLyABNypUJ9e27kS8geJG1yVpJxrt5ZikqG9vD-fowoWrDJmPH-YnZI_BCQMtTtUJcKGh4Ctkk0FRZrku-Op8VjJjCmCDbMX4CgCMC7VONkQpmeBabZKH-9nwSYcx2YDm7Yw--g5pxOAxUtOb9iv6SD98eqHd2CbvgqmTaadVQxvEGW3RhN73z7TH9DGEtx2y5kwbcXf5bpOnq8vHi5vs7uH69uL8Lqu5KFJWuFxrpZWUyjSiQTCskWjBopTWNrnm2krHlXbWGAuF1s7U4EqWN-CmD7FNDhe5szC8jxhT1flYY9uaHocxVoKxXDMtizk9-ENfhzFMt80VFyUoUapJHS1UHYYYA7pqFnxnwlfFoJq3XKlq2fJk95eJo-2w-ZU_tU7geAFi7ZNJfuj_SfsGPrqD_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123905395</pqid></control><display><type>article</type><title>Mpox outbreak: Time series analysis with multifractal and deep learning network</title><source>MEDLINE</source><source>AIP Journals Complete</source><creator>Priyanka, T. M. C. ; Gowrisankar, A. ; Banerjee, Santo</creator><creatorcontrib>Priyanka, T. M. C. ; Gowrisankar, A. ; Banerjee, Santo</creatorcontrib><description>This article presents an overview of an mpox epidemiological situation in the most affected regions—Africa, Americas, and Europe—tailoring fractal interpolation for pre-processing the mpox cases. This keen analysis has highlighted the irregular and fractal patterns in the trend of mpox transmission. During the current scenario of public health emergency of international concern due to an mpox outbreak, an additional significance of this article is the interpretation of mpox spread in light of multifractality. The self-similar measure, namely, the multifractal measure, is utilized to explore the heterogeneity in the mpox cases. Moreover, a bidirectional long-short term memory neural network has been employed to forecast the future mpox spread to alert the outbreak as it seems to be a silent symptom for global epidemic.</description><identifier>ISSN: 1054-1500</identifier><identifier>ISSN: 1089-7682</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/5.0236082</identifier><identifier>PMID: 39413265</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Deep Learning ; Disease Outbreaks ; Fractal analysis ; Fractals ; Heterogeneity ; Humans ; Mpox (monkeypox) ; Neural networks ; Neural Networks, Computer ; Outbreaks ; Public health ; Self-similarity ; Viral diseases</subject><ispartof>Chaos (Woodbury, N.Y.), 2024-10, Vol.34 (10)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c238t-8f766565445ad3de0a1d4eb0be44bbd7626b4f256fbaab0866fac0f917d0fab03</cites><orcidid>0000-0002-2135-695X ; 0000-0002-7473-9524 ; 0000-0002-5093-2805</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,4498,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39413265$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Priyanka, T. M. C.</creatorcontrib><creatorcontrib>Gowrisankar, A.</creatorcontrib><creatorcontrib>Banerjee, Santo</creatorcontrib><title>Mpox outbreak: Time series analysis with multifractal and deep learning network</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>This article presents an overview of an mpox epidemiological situation in the most affected regions—Africa, Americas, and Europe—tailoring fractal interpolation for pre-processing the mpox cases. This keen analysis has highlighted the irregular and fractal patterns in the trend of mpox transmission. During the current scenario of public health emergency of international concern due to an mpox outbreak, an additional significance of this article is the interpretation of mpox spread in light of multifractality. The self-similar measure, namely, the multifractal measure, is utilized to explore the heterogeneity in the mpox cases. Moreover, a bidirectional long-short term memory neural network has been employed to forecast the future mpox spread to alert the outbreak as it seems to be a silent symptom for global epidemic.</description><subject>Deep Learning</subject><subject>Disease Outbreaks</subject><subject>Fractal analysis</subject><subject>Fractals</subject><subject>Heterogeneity</subject><subject>Humans</subject><subject>Mpox (monkeypox)</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Outbreaks</subject><subject>Public health</subject><subject>Self-similarity</subject><subject>Viral diseases</subject><issn>1054-1500</issn><issn>1089-7682</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90MtKxTAQBuAgiveFLyABNypUJ9e27kS8geJG1yVpJxrt5ZikqG9vD-fowoWrDJmPH-YnZI_BCQMtTtUJcKGh4Ctkk0FRZrku-Op8VjJjCmCDbMX4CgCMC7VONkQpmeBabZKH-9nwSYcx2YDm7Yw--g5pxOAxUtOb9iv6SD98eqHd2CbvgqmTaadVQxvEGW3RhN73z7TH9DGEtx2y5kwbcXf5bpOnq8vHi5vs7uH69uL8Lqu5KFJWuFxrpZWUyjSiQTCskWjBopTWNrnm2krHlXbWGAuF1s7U4EqWN-CmD7FNDhe5szC8jxhT1flYY9uaHocxVoKxXDMtizk9-ENfhzFMt80VFyUoUapJHS1UHYYYA7pqFnxnwlfFoJq3XKlq2fJk95eJo-2w-ZU_tU7geAFi7ZNJfuj_SfsGPrqD_A</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Priyanka, T. M. C.</creator><creator>Gowrisankar, A.</creator><creator>Banerjee, Santo</creator><general>American Institute of Physics</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2135-695X</orcidid><orcidid>https://orcid.org/0000-0002-7473-9524</orcidid><orcidid>https://orcid.org/0000-0002-5093-2805</orcidid></search><sort><creationdate>202410</creationdate><title>Mpox outbreak: Time series analysis with multifractal and deep learning network</title><author>Priyanka, T. M. C. ; Gowrisankar, A. ; Banerjee, Santo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c238t-8f766565445ad3de0a1d4eb0be44bbd7626b4f256fbaab0866fac0f917d0fab03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Deep Learning</topic><topic>Disease Outbreaks</topic><topic>Fractal analysis</topic><topic>Fractals</topic><topic>Heterogeneity</topic><topic>Humans</topic><topic>Mpox (monkeypox)</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Outbreaks</topic><topic>Public health</topic><topic>Self-similarity</topic><topic>Viral diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Priyanka, T. M. C.</creatorcontrib><creatorcontrib>Gowrisankar, A.</creatorcontrib><creatorcontrib>Banerjee, Santo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Priyanka, T. M. C.</au><au>Gowrisankar, A.</au><au>Banerjee, Santo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mpox outbreak: Time series analysis with multifractal and deep learning network</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2024-10</date><risdate>2024</risdate><volume>34</volume><issue>10</issue><issn>1054-1500</issn><issn>1089-7682</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>This article presents an overview of an mpox epidemiological situation in the most affected regions—Africa, Americas, and Europe—tailoring fractal interpolation for pre-processing the mpox cases. This keen analysis has highlighted the irregular and fractal patterns in the trend of mpox transmission. During the current scenario of public health emergency of international concern due to an mpox outbreak, an additional significance of this article is the interpretation of mpox spread in light of multifractality. The self-similar measure, namely, the multifractal measure, is utilized to explore the heterogeneity in the mpox cases. Moreover, a bidirectional long-short term memory neural network has been employed to forecast the future mpox spread to alert the outbreak as it seems to be a silent symptom for global epidemic.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>39413265</pmid><doi>10.1063/5.0236082</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2135-695X</orcidid><orcidid>https://orcid.org/0000-0002-7473-9524</orcidid><orcidid>https://orcid.org/0000-0002-5093-2805</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1054-1500
ispartof Chaos (Woodbury, N.Y.), 2024-10, Vol.34 (10)
issn 1054-1500
1089-7682
1089-7682
language eng
recordid cdi_proquest_miscellaneous_3117616480
source MEDLINE; AIP Journals Complete
subjects Deep Learning
Disease Outbreaks
Fractal analysis
Fractals
Heterogeneity
Humans
Mpox (monkeypox)
Neural networks
Neural Networks, Computer
Outbreaks
Public health
Self-similarity
Viral diseases
title Mpox outbreak: Time series analysis with multifractal and deep learning network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A59%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mpox%20outbreak:%20Time%20series%20analysis%20with%20multifractal%20and%20deep%20learning%20network&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Priyanka,%20T.%20M.%20C.&rft.date=2024-10&rft.volume=34&rft.issue=10&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/5.0236082&rft_dat=%3Cproquest_cross%3E3117616480%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3123905395&rft_id=info:pmid/39413265&rfr_iscdi=true