Polymer nanodiscs support the functional extraction of an artificial transmembrane cytochrome
Polymer nanodiscs are an attractive alternative to surfactants for studying integral membrane proteins within their native lipid environment. Here, we investigate the use of such polymers to isolate a computationally-designed de novo membrane cytochrome named CytbX. We show that the block copolymers...
Gespeichert in:
Veröffentlicht in: | Biochimica et biophysica acta. Biomembranes 2025-01, Vol.1867 (1), p.184392, Article 184392 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 184392 |
container_title | Biochimica et biophysica acta. Biomembranes |
container_volume | 1867 |
creator | Hardy, Benjamin J. Ford, Holly C. Rudin, May Anderson, J.L. Ross Curnow, Paul |
description | Polymer nanodiscs are an attractive alternative to surfactants for studying integral membrane proteins within their native lipid environment. Here, we investigate the use of such polymers to isolate a computationally-designed de novo membrane cytochrome named CytbX. We show that the block copolymers known as CyclAPols can efficiently extract CytbX directly from biomembranes and are compatible with the downstream purification and biophysical characterisation of this artificial protein. CyclAPol-solubilised CytbX is well-folded and highly robust with properties that are essentially identical to those observed for the same protein in a detergent micelle. However, electron transfer to CytbX from a diffusive flavoprotein is substantially faster in micelles than in the nanodisc system. Our results confirm that polymer nanodiscs will be a useful tool for the ongoing study and application of de novo membrane proteins.
[Display omitted]
•A de novo membrane cytochrome is extracted from cell membranes in polymer lipid nanodiscs.•Efficient solubilisation is achieved with the family of polymers known as CyclAPols.•The key features of the synthetic cytochrome are preserved in the native lipid nanodisc. |
doi_str_mv | 10.1016/j.bbamem.2024.184392 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3117616430</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0005273624001238</els_id><sourcerecordid>3117616430</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-776a6f28cada9de7660579c77a8dfd49d3875e2867cb90b346296bfd372961733</originalsourceid><addsrcrecordid>eNp9kM1O3DAUha0KxAxT3gAhL9lk6r-xkw1SNYIWCQkWsKwsx74RHiXxYDsV8_aYZtplV0fWPcf3ng-hS0rWlFD5bbduWzPAsGaEiTWtBW_YF7SktWoqJgU7QUtCyKZiissFOk9pR0pMsM0ZWvBGUEEJWaJfT6E_DBDxaMbgfLIJp2m_DzHj_Aq4m0abfRhNj-E9R_PngUOHzYhNzL7z1pdZmYyp3NIWBWwPOdjXGAb4ik470ye4OOoKvdzdPm9_Vg-PP-633x8qy2qVK6WkkR2rrXGmcaCkJBvVWKVM7TonGsdrtQFWS2XbhrRcSNbItnNcFaWK8xW6nv_dx_A2Qcp6KFWg78s5YUqaU6pkKc9JsYrZamNIKUKn99EPJh40JfoTrN7pGaz-BKtnsCV2ddwwtQO4f6G_JIvhZjZA6fnbQ9TJehgtOB_BZu2C__-GD6xCjHE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3117616430</pqid></control><display><type>article</type><title>Polymer nanodiscs support the functional extraction of an artificial transmembrane cytochrome</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Hardy, Benjamin J. ; Ford, Holly C. ; Rudin, May ; Anderson, J.L. Ross ; Curnow, Paul</creator><creatorcontrib>Hardy, Benjamin J. ; Ford, Holly C. ; Rudin, May ; Anderson, J.L. Ross ; Curnow, Paul</creatorcontrib><description>Polymer nanodiscs are an attractive alternative to surfactants for studying integral membrane proteins within their native lipid environment. Here, we investigate the use of such polymers to isolate a computationally-designed de novo membrane cytochrome named CytbX. We show that the block copolymers known as CyclAPols can efficiently extract CytbX directly from biomembranes and are compatible with the downstream purification and biophysical characterisation of this artificial protein. CyclAPol-solubilised CytbX is well-folded and highly robust with properties that are essentially identical to those observed for the same protein in a detergent micelle. However, electron transfer to CytbX from a diffusive flavoprotein is substantially faster in micelles than in the nanodisc system. Our results confirm that polymer nanodiscs will be a useful tool for the ongoing study and application of de novo membrane proteins.
[Display omitted]
•A de novo membrane cytochrome is extracted from cell membranes in polymer lipid nanodiscs.•Efficient solubilisation is achieved with the family of polymers known as CyclAPols.•The key features of the synthetic cytochrome are preserved in the native lipid nanodisc.</description><identifier>ISSN: 0005-2736</identifier><identifier>ISSN: 1879-2642</identifier><identifier>EISSN: 1879-2642</identifier><identifier>DOI: 10.1016/j.bbamem.2024.184392</identifier><identifier>PMID: 39414100</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Cytochrome ; Cytochromes - chemistry ; Cytochromes - metabolism ; Electron Transport ; Lipid Bilayers - chemistry ; Membrane protein purification ; Membrane Proteins - chemistry ; Membrane Proteins - metabolism ; Micelles ; Nanostructures - chemistry ; Polymer nanodisc ; Polymers - chemistry ; Protein design</subject><ispartof>Biochimica et biophysica acta. Biomembranes, 2025-01, Vol.1867 (1), p.184392, Article 184392</ispartof><rights>2024 The Authors</rights><rights>Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-776a6f28cada9de7660579c77a8dfd49d3875e2867cb90b346296bfd372961733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bbamem.2024.184392$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39414100$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hardy, Benjamin J.</creatorcontrib><creatorcontrib>Ford, Holly C.</creatorcontrib><creatorcontrib>Rudin, May</creatorcontrib><creatorcontrib>Anderson, J.L. Ross</creatorcontrib><creatorcontrib>Curnow, Paul</creatorcontrib><title>Polymer nanodiscs support the functional extraction of an artificial transmembrane cytochrome</title><title>Biochimica et biophysica acta. Biomembranes</title><addtitle>Biochim Biophys Acta Biomembr</addtitle><description>Polymer nanodiscs are an attractive alternative to surfactants for studying integral membrane proteins within their native lipid environment. Here, we investigate the use of such polymers to isolate a computationally-designed de novo membrane cytochrome named CytbX. We show that the block copolymers known as CyclAPols can efficiently extract CytbX directly from biomembranes and are compatible with the downstream purification and biophysical characterisation of this artificial protein. CyclAPol-solubilised CytbX is well-folded and highly robust with properties that are essentially identical to those observed for the same protein in a detergent micelle. However, electron transfer to CytbX from a diffusive flavoprotein is substantially faster in micelles than in the nanodisc system. Our results confirm that polymer nanodiscs will be a useful tool for the ongoing study and application of de novo membrane proteins.
[Display omitted]
•A de novo membrane cytochrome is extracted from cell membranes in polymer lipid nanodiscs.•Efficient solubilisation is achieved with the family of polymers known as CyclAPols.•The key features of the synthetic cytochrome are preserved in the native lipid nanodisc.</description><subject>Cytochrome</subject><subject>Cytochromes - chemistry</subject><subject>Cytochromes - metabolism</subject><subject>Electron Transport</subject><subject>Lipid Bilayers - chemistry</subject><subject>Membrane protein purification</subject><subject>Membrane Proteins - chemistry</subject><subject>Membrane Proteins - metabolism</subject><subject>Micelles</subject><subject>Nanostructures - chemistry</subject><subject>Polymer nanodisc</subject><subject>Polymers - chemistry</subject><subject>Protein design</subject><issn>0005-2736</issn><issn>1879-2642</issn><issn>1879-2642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kM1O3DAUha0KxAxT3gAhL9lk6r-xkw1SNYIWCQkWsKwsx74RHiXxYDsV8_aYZtplV0fWPcf3ng-hS0rWlFD5bbduWzPAsGaEiTWtBW_YF7SktWoqJgU7QUtCyKZiissFOk9pR0pMsM0ZWvBGUEEJWaJfT6E_DBDxaMbgfLIJp2m_DzHj_Aq4m0abfRhNj-E9R_PngUOHzYhNzL7z1pdZmYyp3NIWBWwPOdjXGAb4ik470ye4OOoKvdzdPm9_Vg-PP-633x8qy2qVK6WkkR2rrXGmcaCkJBvVWKVM7TonGsdrtQFWS2XbhrRcSNbItnNcFaWK8xW6nv_dx_A2Qcp6KFWg78s5YUqaU6pkKc9JsYrZamNIKUKn99EPJh40JfoTrN7pGaz-BKtnsCV2ddwwtQO4f6G_JIvhZjZA6fnbQ9TJehgtOB_BZu2C__-GD6xCjHE</recordid><startdate>202501</startdate><enddate>202501</enddate><creator>Hardy, Benjamin J.</creator><creator>Ford, Holly C.</creator><creator>Rudin, May</creator><creator>Anderson, J.L. Ross</creator><creator>Curnow, Paul</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202501</creationdate><title>Polymer nanodiscs support the functional extraction of an artificial transmembrane cytochrome</title><author>Hardy, Benjamin J. ; Ford, Holly C. ; Rudin, May ; Anderson, J.L. Ross ; Curnow, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-776a6f28cada9de7660579c77a8dfd49d3875e2867cb90b346296bfd372961733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Cytochrome</topic><topic>Cytochromes - chemistry</topic><topic>Cytochromes - metabolism</topic><topic>Electron Transport</topic><topic>Lipid Bilayers - chemistry</topic><topic>Membrane protein purification</topic><topic>Membrane Proteins - chemistry</topic><topic>Membrane Proteins - metabolism</topic><topic>Micelles</topic><topic>Nanostructures - chemistry</topic><topic>Polymer nanodisc</topic><topic>Polymers - chemistry</topic><topic>Protein design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hardy, Benjamin J.</creatorcontrib><creatorcontrib>Ford, Holly C.</creatorcontrib><creatorcontrib>Rudin, May</creatorcontrib><creatorcontrib>Anderson, J.L. Ross</creatorcontrib><creatorcontrib>Curnow, Paul</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biochimica et biophysica acta. Biomembranes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hardy, Benjamin J.</au><au>Ford, Holly C.</au><au>Rudin, May</au><au>Anderson, J.L. Ross</au><au>Curnow, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polymer nanodiscs support the functional extraction of an artificial transmembrane cytochrome</atitle><jtitle>Biochimica et biophysica acta. Biomembranes</jtitle><addtitle>Biochim Biophys Acta Biomembr</addtitle><date>2025-01</date><risdate>2025</risdate><volume>1867</volume><issue>1</issue><spage>184392</spage><pages>184392-</pages><artnum>184392</artnum><issn>0005-2736</issn><issn>1879-2642</issn><eissn>1879-2642</eissn><abstract>Polymer nanodiscs are an attractive alternative to surfactants for studying integral membrane proteins within their native lipid environment. Here, we investigate the use of such polymers to isolate a computationally-designed de novo membrane cytochrome named CytbX. We show that the block copolymers known as CyclAPols can efficiently extract CytbX directly from biomembranes and are compatible with the downstream purification and biophysical characterisation of this artificial protein. CyclAPol-solubilised CytbX is well-folded and highly robust with properties that are essentially identical to those observed for the same protein in a detergent micelle. However, electron transfer to CytbX from a diffusive flavoprotein is substantially faster in micelles than in the nanodisc system. Our results confirm that polymer nanodiscs will be a useful tool for the ongoing study and application of de novo membrane proteins.
[Display omitted]
•A de novo membrane cytochrome is extracted from cell membranes in polymer lipid nanodiscs.•Efficient solubilisation is achieved with the family of polymers known as CyclAPols.•The key features of the synthetic cytochrome are preserved in the native lipid nanodisc.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>39414100</pmid><doi>10.1016/j.bbamem.2024.184392</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0005-2736 |
ispartof | Biochimica et biophysica acta. Biomembranes, 2025-01, Vol.1867 (1), p.184392, Article 184392 |
issn | 0005-2736 1879-2642 1879-2642 |
language | eng |
recordid | cdi_proquest_miscellaneous_3117616430 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Cytochrome Cytochromes - chemistry Cytochromes - metabolism Electron Transport Lipid Bilayers - chemistry Membrane protein purification Membrane Proteins - chemistry Membrane Proteins - metabolism Micelles Nanostructures - chemistry Polymer nanodisc Polymers - chemistry Protein design |
title | Polymer nanodiscs support the functional extraction of an artificial transmembrane cytochrome |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T20%3A40%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polymer%20nanodiscs%20support%20the%20functional%20extraction%20of%20an%20artificial%20transmembrane%20cytochrome&rft.jtitle=Biochimica%20et%20biophysica%20acta.%20Biomembranes&rft.au=Hardy,%20Benjamin%20J.&rft.date=2025-01&rft.volume=1867&rft.issue=1&rft.spage=184392&rft.pages=184392-&rft.artnum=184392&rft.issn=0005-2736&rft.eissn=1879-2642&rft_id=info:doi/10.1016/j.bbamem.2024.184392&rft_dat=%3Cproquest_cross%3E3117616430%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3117616430&rft_id=info:pmid/39414100&rft_els_id=S0005273624001238&rfr_iscdi=true |