CuFe Cooperativity at the Membrane-Electrode Interface Elicits a Tandem 2e–+2e– Mechanism for Exclusive O2‑To‑H2O Electroreduction

High O2 reduction reaction (ORR) kinetics and exclusive 4e– pathway selectivity are keys to realizing a sustainable society. However, nonprecious electrocatalysts at present cannot enhance the ORR turnover frequency and H2O Faradaic efficiency (FE) concurrently. To address these two challenges, hybr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2024-11, Vol.146 (46), p.31757-31767
Hauptverfasser: Zeng, Tian, Chen, Jiu, Yu, Zuo Hang, Tse, Edmund C. M.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 31767
container_issue 46
container_start_page 31757
container_title Journal of the American Chemical Society
container_volume 146
creator Zeng, Tian
Chen, Jiu
Yu, Zuo Hang
Tse, Edmund C. M.
description High O2 reduction reaction (ORR) kinetics and exclusive 4e– pathway selectivity are keys to realizing a sustainable society. However, nonprecious electrocatalysts at present cannot enhance the ORR turnover frequency and H2O Faradaic efficiency (FE) concurrently. To address these two challenges, hybrid bilayer membrane (HBM) electrodes with earth-abundant metal centers are developed to control proton-coupled electron transfer (PCET) in ORR. Here, an oxidase-inspired CuFe active site is supported on a tris­(2-pyridylmethyl)­amine HBM and explored as a unique interface for efficient ORR. This bimetallic HBM displayed an ORR activity 1.4 times higher than the monometallic systems and exhibited the highest FE for H2O (∼94%) among Cu-, Fe-, Ni-, and Co-based HBMs. Contrary to previous studies where the ORR current decreases upon embedding the metal center in a hydrophobic lipid environment, here, the incorporation of a nitrile-terminated proton carrier at the HBM interface boosts the ORR current by 1.7 folds relative to the case where the catalytic site is directly exposed to protons in solution. This intriguing dual improvement is supported by density function theory calculations where an additional 2e–+2e– mechanism occurs in parallel to the direct 4e– pathway, highlighting the synergistic effect of the CuFe HBM for facilitating high-performance ORR. A Zn-air battery is constructed using this CuFe HBM for the first time, further demonstrating that the knowledge gained from this HBM technology holds practical values in real-life applications. These findings on interfacial PCET are envisioned to spark new design principles for future catalysts with optimal electrochemical properties for advanced energy conversion schemes.
doi_str_mv 10.1021/jacs.4c10625
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_3117073217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3117073217</sourcerecordid><originalsourceid>FETCH-LOGICAL-a151t-1ed06190756bb1a04892acc403b9e1b609d971af263f91151fc00dfc31f74c5b3</originalsourceid><addsrcrecordid>eNpFkE9Lw0AQxRdRsFZvfoA9CpK6s5s_zVFCaguVXuo5bDazdEuSrdlN0Ztnb-I37Ccx1YKXNwzMe8z7EXILbAKMw8NWKjcJFbCYR2dkBBFnQQQ8PicjxhgPkmksLsmVc9thDfkURuQz62dIM2t32Elv9sa_U-mp3yB9xqbsZItBXqPyna2QLlqPnZYKaV4bZbyjkq5lW2FDOR4-vu9_dXCqjWyNa6i2Hc3fVN07s0e64oePr7UdZM5X9BTbYdUrb2x7TS60rB3enOaYvMzydTYPlqunRfa4DCRE4APAisWQsiSKyxIkC6cpl0qFTJQpQhmztEoTkJrHQqcwWLRirNJKgE5CFZViTO7-cnedfe3R-aIxTmFdD11t7woBkLBEcEj-Twewxdb2XTs8VgArjriLI-7ihFv8AHs6du4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3117073217</pqid></control><display><type>article</type><title>CuFe Cooperativity at the Membrane-Electrode Interface Elicits a Tandem 2e–+2e– Mechanism for Exclusive O2‑To‑H2O Electroreduction</title><source>American Chemical Society Journals</source><creator>Zeng, Tian ; Chen, Jiu ; Yu, Zuo Hang ; Tse, Edmund C. M.</creator><creatorcontrib>Zeng, Tian ; Chen, Jiu ; Yu, Zuo Hang ; Tse, Edmund C. M.</creatorcontrib><description>High O2 reduction reaction (ORR) kinetics and exclusive 4e– pathway selectivity are keys to realizing a sustainable society. However, nonprecious electrocatalysts at present cannot enhance the ORR turnover frequency and H2O Faradaic efficiency (FE) concurrently. To address these two challenges, hybrid bilayer membrane (HBM) electrodes with earth-abundant metal centers are developed to control proton-coupled electron transfer (PCET) in ORR. Here, an oxidase-inspired CuFe active site is supported on a tris­(2-pyridylmethyl)­amine HBM and explored as a unique interface for efficient ORR. This bimetallic HBM displayed an ORR activity 1.4 times higher than the monometallic systems and exhibited the highest FE for H2O (∼94%) among Cu-, Fe-, Ni-, and Co-based HBMs. Contrary to previous studies where the ORR current decreases upon embedding the metal center in a hydrophobic lipid environment, here, the incorporation of a nitrile-terminated proton carrier at the HBM interface boosts the ORR current by 1.7 folds relative to the case where the catalytic site is directly exposed to protons in solution. This intriguing dual improvement is supported by density function theory calculations where an additional 2e–+2e– mechanism occurs in parallel to the direct 4e– pathway, highlighting the synergistic effect of the CuFe HBM for facilitating high-performance ORR. A Zn-air battery is constructed using this CuFe HBM for the first time, further demonstrating that the knowledge gained from this HBM technology holds practical values in real-life applications. These findings on interfacial PCET are envisioned to spark new design principles for future catalysts with optimal electrochemical properties for advanced energy conversion schemes.</description><identifier>ISSN: 0002-7863</identifier><identifier>ISSN: 1520-5126</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.4c10625</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2024-11, Vol.146 (46), p.31757-31767</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9313-1290 ; 0000-0003-3662-5881</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.4c10625$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.4c10625$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27074,27922,27923,56736,56786</link.rule.ids></links><search><creatorcontrib>Zeng, Tian</creatorcontrib><creatorcontrib>Chen, Jiu</creatorcontrib><creatorcontrib>Yu, Zuo Hang</creatorcontrib><creatorcontrib>Tse, Edmund C. M.</creatorcontrib><title>CuFe Cooperativity at the Membrane-Electrode Interface Elicits a Tandem 2e–+2e– Mechanism for Exclusive O2‑To‑H2O Electroreduction</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>High O2 reduction reaction (ORR) kinetics and exclusive 4e– pathway selectivity are keys to realizing a sustainable society. However, nonprecious electrocatalysts at present cannot enhance the ORR turnover frequency and H2O Faradaic efficiency (FE) concurrently. To address these two challenges, hybrid bilayer membrane (HBM) electrodes with earth-abundant metal centers are developed to control proton-coupled electron transfer (PCET) in ORR. Here, an oxidase-inspired CuFe active site is supported on a tris­(2-pyridylmethyl)­amine HBM and explored as a unique interface for efficient ORR. This bimetallic HBM displayed an ORR activity 1.4 times higher than the monometallic systems and exhibited the highest FE for H2O (∼94%) among Cu-, Fe-, Ni-, and Co-based HBMs. Contrary to previous studies where the ORR current decreases upon embedding the metal center in a hydrophobic lipid environment, here, the incorporation of a nitrile-terminated proton carrier at the HBM interface boosts the ORR current by 1.7 folds relative to the case where the catalytic site is directly exposed to protons in solution. This intriguing dual improvement is supported by density function theory calculations where an additional 2e–+2e– mechanism occurs in parallel to the direct 4e– pathway, highlighting the synergistic effect of the CuFe HBM for facilitating high-performance ORR. A Zn-air battery is constructed using this CuFe HBM for the first time, further demonstrating that the knowledge gained from this HBM technology holds practical values in real-life applications. These findings on interfacial PCET are envisioned to spark new design principles for future catalysts with optimal electrochemical properties for advanced energy conversion schemes.</description><issn>0002-7863</issn><issn>1520-5126</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFkE9Lw0AQxRdRsFZvfoA9CpK6s5s_zVFCaguVXuo5bDazdEuSrdlN0Ztnb-I37Ccx1YKXNwzMe8z7EXILbAKMw8NWKjcJFbCYR2dkBBFnQQQ8PicjxhgPkmksLsmVc9thDfkURuQz62dIM2t32Elv9sa_U-mp3yB9xqbsZItBXqPyna2QLlqPnZYKaV4bZbyjkq5lW2FDOR4-vu9_dXCqjWyNa6i2Hc3fVN07s0e64oePr7UdZM5X9BTbYdUrb2x7TS60rB3enOaYvMzydTYPlqunRfa4DCRE4APAisWQsiSKyxIkC6cpl0qFTJQpQhmztEoTkJrHQqcwWLRirNJKgE5CFZViTO7-cnedfe3R-aIxTmFdD11t7woBkLBEcEj-Twewxdb2XTs8VgArjriLI-7ihFv8AHs6du4</recordid><startdate>20241120</startdate><enddate>20241120</enddate><creator>Zeng, Tian</creator><creator>Chen, Jiu</creator><creator>Yu, Zuo Hang</creator><creator>Tse, Edmund C. M.</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9313-1290</orcidid><orcidid>https://orcid.org/0000-0003-3662-5881</orcidid></search><sort><creationdate>20241120</creationdate><title>CuFe Cooperativity at the Membrane-Electrode Interface Elicits a Tandem 2e–+2e– Mechanism for Exclusive O2‑To‑H2O Electroreduction</title><author>Zeng, Tian ; Chen, Jiu ; Yu, Zuo Hang ; Tse, Edmund C. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a151t-1ed06190756bb1a04892acc403b9e1b609d971af263f91151fc00dfc31f74c5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Tian</creatorcontrib><creatorcontrib>Chen, Jiu</creatorcontrib><creatorcontrib>Yu, Zuo Hang</creatorcontrib><creatorcontrib>Tse, Edmund C. M.</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeng, Tian</au><au>Chen, Jiu</au><au>Yu, Zuo Hang</au><au>Tse, Edmund C. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CuFe Cooperativity at the Membrane-Electrode Interface Elicits a Tandem 2e–+2e– Mechanism for Exclusive O2‑To‑H2O Electroreduction</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2024-11-20</date><risdate>2024</risdate><volume>146</volume><issue>46</issue><spage>31757</spage><epage>31767</epage><pages>31757-31767</pages><issn>0002-7863</issn><issn>1520-5126</issn><eissn>1520-5126</eissn><abstract>High O2 reduction reaction (ORR) kinetics and exclusive 4e– pathway selectivity are keys to realizing a sustainable society. However, nonprecious electrocatalysts at present cannot enhance the ORR turnover frequency and H2O Faradaic efficiency (FE) concurrently. To address these two challenges, hybrid bilayer membrane (HBM) electrodes with earth-abundant metal centers are developed to control proton-coupled electron transfer (PCET) in ORR. Here, an oxidase-inspired CuFe active site is supported on a tris­(2-pyridylmethyl)­amine HBM and explored as a unique interface for efficient ORR. This bimetallic HBM displayed an ORR activity 1.4 times higher than the monometallic systems and exhibited the highest FE for H2O (∼94%) among Cu-, Fe-, Ni-, and Co-based HBMs. Contrary to previous studies where the ORR current decreases upon embedding the metal center in a hydrophobic lipid environment, here, the incorporation of a nitrile-terminated proton carrier at the HBM interface boosts the ORR current by 1.7 folds relative to the case where the catalytic site is directly exposed to protons in solution. This intriguing dual improvement is supported by density function theory calculations where an additional 2e–+2e– mechanism occurs in parallel to the direct 4e– pathway, highlighting the synergistic effect of the CuFe HBM for facilitating high-performance ORR. A Zn-air battery is constructed using this CuFe HBM for the first time, further demonstrating that the knowledge gained from this HBM technology holds practical values in real-life applications. These findings on interfacial PCET are envisioned to spark new design principles for future catalysts with optimal electrochemical properties for advanced energy conversion schemes.</abstract><pub>American Chemical Society</pub><doi>10.1021/jacs.4c10625</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9313-1290</orcidid><orcidid>https://orcid.org/0000-0003-3662-5881</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2024-11, Vol.146 (46), p.31757-31767
issn 0002-7863
1520-5126
1520-5126
language eng
recordid cdi_proquest_miscellaneous_3117073217
source American Chemical Society Journals
title CuFe Cooperativity at the Membrane-Electrode Interface Elicits a Tandem 2e–+2e– Mechanism for Exclusive O2‑To‑H2O Electroreduction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T06%3A33%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CuFe%20Cooperativity%20at%20the%20Membrane-Electrode%20Interface%20Elicits%20a%20Tandem%202e%E2%80%93+2e%E2%80%93%20Mechanism%20for%20Exclusive%20O2%E2%80%91To%E2%80%91H2O%20Electroreduction&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Zeng,%20Tian&rft.date=2024-11-20&rft.volume=146&rft.issue=46&rft.spage=31757&rft.epage=31767&rft.pages=31757-31767&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.4c10625&rft_dat=%3Cproquest_acs_j%3E3117073217%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3117073217&rft_id=info:pmid/&rfr_iscdi=true