Confirmatory Adaptive Designs for Clinical Trials With Multiple Time‐to‐Event Outcomes in Multi‐state Markov Models

ABSTRACT The analysis of multiple time‐to‐event outcomes in a randomized controlled clinical trial can be accomplished with existing methods. However, depending on the characteristics of the disease under investigation and the circumstances in which the study is planned, it may be of interest to con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrical journal 2024-10, Vol.66 (7), p.e202300181-n/a
Hauptverfasser: Danzer, Moritz Fabian, Faldum, Andreas, Simon, Thorsten, Hero, Barbara, Schmidt, Rene
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 7
container_start_page e202300181
container_title Biometrical journal
container_volume 66
creator Danzer, Moritz Fabian
Faldum, Andreas
Simon, Thorsten
Hero, Barbara
Schmidt, Rene
description ABSTRACT The analysis of multiple time‐to‐event outcomes in a randomized controlled clinical trial can be accomplished with existing methods. However, depending on the characteristics of the disease under investigation and the circumstances in which the study is planned, it may be of interest to conduct interim analyses and adapt the study design if necessary. Due to the expected dependency of the endpoints, the full available information on the involved endpoints may not be used for this purpose. We suggest a solution to this problem by embedding the endpoints in a multistate model. If this model is Markovian, it is possible to take the disease history of the patients into account and allow for data‐dependent design adaptations. To this end, we introduce a flexible test procedure for a variety of applications, but are particularly concerned with the simultaneous consideration of progression‐free survival (PFS) and overall survival (OS). This setting is of key interest in oncological trials. We conduct simulation studies to determine the properties for small sample sizes and demonstrate an application based on data from the NB2004‐HR study.
doi_str_mv 10.1002/bimj.202300181
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3116676681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3116759657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2938-45a752b0ea9127320ecf0cabf6dee5b98269d3a6c4678256550147a8cc5f1c0c3</originalsourceid><addsrcrecordid>eNqF0TFv1DAUB3ALgei1sDIiSywsOZ7t2HHGci1Q1FOXQ4yR47yADyc-bOfQbXyEfkY-CSlXOrCw-A3-vb-e9CfkBYMlA-BvWjdslxy4AGCaPSILJjkrShDqMVmA4KIQuqxOyGlKWwCooeRPyYmoS-C6VAtyWIWxd3EwOcQDPe_MLrs90gtM7suYaB8iXXk3Oms83URnfKKfXf5K15PPbueRbtyAv37e5jA_l3scM72Zsg0DJurGI5t_UjYZ6drEb2FP16FDn56RJ_0ch8_v5xn59O5ys_pQXN-8v1qdXxeW10IXpTSV5C2gqRmvBAe0PVjT9qpDlG2tuao7YZQtVaW5VFICKyujrZU9s2DFGXl9zN3F8H3ClJvBJYvemxHDlBrBmFKVUprN9NU_dBumOM7X_VGVrJWsZrU8KhtDShH7ZhfdYOKhYdDcldLcldI8lDIvvLyPndoBuwf-t4UZlEfww3k8_CeueXu1_sgV1-I3AkabAg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3116759657</pqid></control><display><type>article</type><title>Confirmatory Adaptive Designs for Clinical Trials With Multiple Time‐to‐Event Outcomes in Multi‐state Markov Models</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Danzer, Moritz Fabian ; Faldum, Andreas ; Simon, Thorsten ; Hero, Barbara ; Schmidt, Rene</creator><creatorcontrib>Danzer, Moritz Fabian ; Faldum, Andreas ; Simon, Thorsten ; Hero, Barbara ; Schmidt, Rene</creatorcontrib><description>ABSTRACT The analysis of multiple time‐to‐event outcomes in a randomized controlled clinical trial can be accomplished with existing methods. However, depending on the characteristics of the disease under investigation and the circumstances in which the study is planned, it may be of interest to conduct interim analyses and adapt the study design if necessary. Due to the expected dependency of the endpoints, the full available information on the involved endpoints may not be used for this purpose. We suggest a solution to this problem by embedding the endpoints in a multistate model. If this model is Markovian, it is possible to take the disease history of the patients into account and allow for data‐dependent design adaptations. To this end, we introduce a flexible test procedure for a variety of applications, but are particularly concerned with the simultaneous consideration of progression‐free survival (PFS) and overall survival (OS). This setting is of key interest in oncological trials. We conduct simulation studies to determine the properties for small sample sizes and demonstrate an application based on data from the NB2004‐HR study.</description><identifier>ISSN: 0323-3847</identifier><identifier>ISSN: 1521-4036</identifier><identifier>EISSN: 1521-4036</identifier><identifier>DOI: 10.1002/bimj.202300181</identifier><identifier>PMID: 39402846</identifier><language>eng</language><publisher>Germany: Wiley - VCH Verlag GmbH &amp; Co. KGaA</publisher><subject>Biometry - methods ; clinical trial ; Clinical trials ; Clinical Trials as Topic - methods ; Disease control ; Embedding ; Endpoint Determination ; Humans ; log‐rank test ; Markov Chains ; Models, Statistical ; Progression-Free Survival ; Randomized Controlled Trials as Topic ; Research Design ; sample size recalculation ; Survival ; survival analysis</subject><ispartof>Biometrical journal, 2024-10, Vol.66 (7), p.e202300181-n/a</ispartof><rights>2024 The Author(s). published by Wiley‐VCH GmbH.</rights><rights>2024 The Author(s). Biometrical Journal published by Wiley‐VCH GmbH.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2938-45a752b0ea9127320ecf0cabf6dee5b98269d3a6c4678256550147a8cc5f1c0c3</cites><orcidid>0000-0002-0512-4227 ; 0000-0003-4808-6707</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbimj.202300181$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbimj.202300181$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39402846$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Danzer, Moritz Fabian</creatorcontrib><creatorcontrib>Faldum, Andreas</creatorcontrib><creatorcontrib>Simon, Thorsten</creatorcontrib><creatorcontrib>Hero, Barbara</creatorcontrib><creatorcontrib>Schmidt, Rene</creatorcontrib><title>Confirmatory Adaptive Designs for Clinical Trials With Multiple Time‐to‐Event Outcomes in Multi‐state Markov Models</title><title>Biometrical journal</title><addtitle>Biom J</addtitle><description>ABSTRACT The analysis of multiple time‐to‐event outcomes in a randomized controlled clinical trial can be accomplished with existing methods. However, depending on the characteristics of the disease under investigation and the circumstances in which the study is planned, it may be of interest to conduct interim analyses and adapt the study design if necessary. Due to the expected dependency of the endpoints, the full available information on the involved endpoints may not be used for this purpose. We suggest a solution to this problem by embedding the endpoints in a multistate model. If this model is Markovian, it is possible to take the disease history of the patients into account and allow for data‐dependent design adaptations. To this end, we introduce a flexible test procedure for a variety of applications, but are particularly concerned with the simultaneous consideration of progression‐free survival (PFS) and overall survival (OS). This setting is of key interest in oncological trials. We conduct simulation studies to determine the properties for small sample sizes and demonstrate an application based on data from the NB2004‐HR study.</description><subject>Biometry - methods</subject><subject>clinical trial</subject><subject>Clinical trials</subject><subject>Clinical Trials as Topic - methods</subject><subject>Disease control</subject><subject>Embedding</subject><subject>Endpoint Determination</subject><subject>Humans</subject><subject>log‐rank test</subject><subject>Markov Chains</subject><subject>Models, Statistical</subject><subject>Progression-Free Survival</subject><subject>Randomized Controlled Trials as Topic</subject><subject>Research Design</subject><subject>sample size recalculation</subject><subject>Survival</subject><subject>survival analysis</subject><issn>0323-3847</issn><issn>1521-4036</issn><issn>1521-4036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqF0TFv1DAUB3ALgei1sDIiSywsOZ7t2HHGci1Q1FOXQ4yR47yADyc-bOfQbXyEfkY-CSlXOrCw-A3-vb-e9CfkBYMlA-BvWjdslxy4AGCaPSILJjkrShDqMVmA4KIQuqxOyGlKWwCooeRPyYmoS-C6VAtyWIWxd3EwOcQDPe_MLrs90gtM7suYaB8iXXk3Oms83URnfKKfXf5K15PPbueRbtyAv37e5jA_l3scM72Zsg0DJurGI5t_UjYZ6drEb2FP16FDn56RJ_0ch8_v5xn59O5ys_pQXN-8v1qdXxeW10IXpTSV5C2gqRmvBAe0PVjT9qpDlG2tuao7YZQtVaW5VFICKyujrZU9s2DFGXl9zN3F8H3ClJvBJYvemxHDlBrBmFKVUprN9NU_dBumOM7X_VGVrJWsZrU8KhtDShH7ZhfdYOKhYdDcldLcldI8lDIvvLyPndoBuwf-t4UZlEfww3k8_CeueXu1_sgV1-I3AkabAg</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Danzer, Moritz Fabian</creator><creator>Faldum, Andreas</creator><creator>Simon, Thorsten</creator><creator>Hero, Barbara</creator><creator>Schmidt, Rene</creator><general>Wiley - VCH Verlag GmbH &amp; Co. KGaA</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0512-4227</orcidid><orcidid>https://orcid.org/0000-0003-4808-6707</orcidid></search><sort><creationdate>202410</creationdate><title>Confirmatory Adaptive Designs for Clinical Trials With Multiple Time‐to‐Event Outcomes in Multi‐state Markov Models</title><author>Danzer, Moritz Fabian ; Faldum, Andreas ; Simon, Thorsten ; Hero, Barbara ; Schmidt, Rene</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2938-45a752b0ea9127320ecf0cabf6dee5b98269d3a6c4678256550147a8cc5f1c0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biometry - methods</topic><topic>clinical trial</topic><topic>Clinical trials</topic><topic>Clinical Trials as Topic - methods</topic><topic>Disease control</topic><topic>Embedding</topic><topic>Endpoint Determination</topic><topic>Humans</topic><topic>log‐rank test</topic><topic>Markov Chains</topic><topic>Models, Statistical</topic><topic>Progression-Free Survival</topic><topic>Randomized Controlled Trials as Topic</topic><topic>Research Design</topic><topic>sample size recalculation</topic><topic>Survival</topic><topic>survival analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Danzer, Moritz Fabian</creatorcontrib><creatorcontrib>Faldum, Andreas</creatorcontrib><creatorcontrib>Simon, Thorsten</creatorcontrib><creatorcontrib>Hero, Barbara</creatorcontrib><creatorcontrib>Schmidt, Rene</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biometrical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Danzer, Moritz Fabian</au><au>Faldum, Andreas</au><au>Simon, Thorsten</au><au>Hero, Barbara</au><au>Schmidt, Rene</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Confirmatory Adaptive Designs for Clinical Trials With Multiple Time‐to‐Event Outcomes in Multi‐state Markov Models</atitle><jtitle>Biometrical journal</jtitle><addtitle>Biom J</addtitle><date>2024-10</date><risdate>2024</risdate><volume>66</volume><issue>7</issue><spage>e202300181</spage><epage>n/a</epage><pages>e202300181-n/a</pages><issn>0323-3847</issn><issn>1521-4036</issn><eissn>1521-4036</eissn><abstract>ABSTRACT The analysis of multiple time‐to‐event outcomes in a randomized controlled clinical trial can be accomplished with existing methods. However, depending on the characteristics of the disease under investigation and the circumstances in which the study is planned, it may be of interest to conduct interim analyses and adapt the study design if necessary. Due to the expected dependency of the endpoints, the full available information on the involved endpoints may not be used for this purpose. We suggest a solution to this problem by embedding the endpoints in a multistate model. If this model is Markovian, it is possible to take the disease history of the patients into account and allow for data‐dependent design adaptations. To this end, we introduce a flexible test procedure for a variety of applications, but are particularly concerned with the simultaneous consideration of progression‐free survival (PFS) and overall survival (OS). This setting is of key interest in oncological trials. We conduct simulation studies to determine the properties for small sample sizes and demonstrate an application based on data from the NB2004‐HR study.</abstract><cop>Germany</cop><pub>Wiley - VCH Verlag GmbH &amp; Co. KGaA</pub><pmid>39402846</pmid><doi>10.1002/bimj.202300181</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-0512-4227</orcidid><orcidid>https://orcid.org/0000-0003-4808-6707</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0323-3847
ispartof Biometrical journal, 2024-10, Vol.66 (7), p.e202300181-n/a
issn 0323-3847
1521-4036
1521-4036
language eng
recordid cdi_proquest_miscellaneous_3116676681
source MEDLINE; Access via Wiley Online Library
subjects Biometry - methods
clinical trial
Clinical trials
Clinical Trials as Topic - methods
Disease control
Embedding
Endpoint Determination
Humans
log‐rank test
Markov Chains
Models, Statistical
Progression-Free Survival
Randomized Controlled Trials as Topic
Research Design
sample size recalculation
Survival
survival analysis
title Confirmatory Adaptive Designs for Clinical Trials With Multiple Time‐to‐Event Outcomes in Multi‐state Markov Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A11%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Confirmatory%20Adaptive%20Designs%20for%20Clinical%20Trials%20With%20Multiple%20Time%E2%80%90to%E2%80%90Event%20Outcomes%20in%20Multi%E2%80%90state%20Markov%20Models&rft.jtitle=Biometrical%20journal&rft.au=Danzer,%20Moritz%20Fabian&rft.date=2024-10&rft.volume=66&rft.issue=7&rft.spage=e202300181&rft.epage=n/a&rft.pages=e202300181-n/a&rft.issn=0323-3847&rft.eissn=1521-4036&rft_id=info:doi/10.1002/bimj.202300181&rft_dat=%3Cproquest_cross%3E3116759657%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3116759657&rft_id=info:pmid/39402846&rfr_iscdi=true